K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2020

\(VT=\frac{4}{2.2\sqrt{a+b}}+\frac{4}{2.2\sqrt{b+c}}+\frac{4}{2.2\sqrt{c+a}}\)

\(VT\ge\frac{4}{a+b+4}+\frac{4}{b+c+4}+\frac{4}{c+a+4}\)

\(VT\ge\frac{36}{a+b+4+b+c+4+c+a+4}=\frac{36}{24}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

mik thấy có gì đó sai sai \"leu\"

\n
7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

30 tháng 9 2019

Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\) 

=3-(  \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A

ta có bdt  \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).

=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)

dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

NV
9 tháng 3 2020

1. ĐKXĐ: ...

Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t\ge\sqrt{7}\)

\(\Rightarrow t^2=8x+9+4\sqrt{4x^2+9x+2}\)

\(\Rightarrow2x+\sqrt{4x^2+9x+2}=\frac{t^2-9}{4}\)

Phương trình trở thành:

\(\frac{t^2-9}{4}+3=t\)

\(\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow4\sqrt{4x^2+9x+2}=t^2-\left(8x+9\right)=-8x\) (\(x\le0\))

\(\Leftrightarrow\sqrt{4x^2+9x+2}=-2x\)

\(\Leftrightarrow4x^2+9x+2=4x^2\Rightarrow x=-\frac{2}{9}\)

NV
9 tháng 3 2020

Bài 2:

Ta có: \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\Rightarrow3\ge a+b+c\)

Do \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Nên BĐT sẽ được chứng minh nếu ta chỉ ra rằng:

\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

Thật vậy, ta có:

\(\sqrt{a}+\sqrt{a}+a^2\ge3a\) ; \(\sqrt{b}+\sqrt{b}+b^2\ge3b\) ; \(\sqrt{c}+\sqrt{c}+c^2\ge3c\)

\(\Rightarrow2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+a^2+b^2+c^2\ge3\left(a+b+c\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+a^2+b^2+c^2\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 5 2018

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

28 tháng 5 2018

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

12 tháng 10 2019

Sửa đề: chứng minh:\(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}+\frac{b^2}{\sqrt{12c^2+11ca+2a^2}}+\frac{c^2}{\sqrt{12a^2+11ca+2b^2}}\ge\frac{3}{5}\)

Ta có: \(12b^2+11bc+2c^2=\frac{1}{4}\left(7b+3c\right)^2-\frac{1}{4}\left(b-c\right)^2\le\frac{1}{4}\left(7b+3c\right)^2\)

Do đó: \(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}\ge\frac{2a^2}{7b+3c}\).Tương tự hai BĐT còn lại rồi cộng theo vế thu được:

\(VT\ge\frac{2a^2}{7b+3c}+\frac{2b^2}{7c+3a}+\frac{2c^2}{7a+3b}\)

\(=2\left(\frac{a^2}{7b+3c}+\frac{b^2}{7c+3a}+\frac{c^2}{7a+3b}\right)\ge\frac{2\left(a+b+c\right)^2}{10\left(a+b+c\right)}=\frac{3}{5}\)(áp dụng BĐT Cauchy-Schwarz dạng Engel)

Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1

P/s: Is that true? Thấy đề nó là lạ nên sửa thôi chứ ko chắc rằng mình sửa đúng..

13 tháng 10 2019

@Cool Kid: Cách của mình"

Đầu tiên ta xét hiệu: \(12b^2+11bc+2c^2-x\left(b-c\right)^2\). Ta chọn x để biểu thức sau khi phân tích có dạng một số chính phương.

\(=\left(12-x\right)b^2+\left(11+2x\right)bc+\left(2-x\right)c^2\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+\left(2-x\right)c^2-\frac{\left(11+2x\right)^2c^2}{4\left(12-x\right)}\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+c^2\left[\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}\right]\)

Đến đây thì ý tưởng đã rõ, ta chọn x sao cho 12 - x > 0 và:

\(\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}=0\). Bấm máy tính ta suy ra \(x=-\frac{1}{4}\)

Từ đó có thể dễ dàng suy ra cách phân tích bên trên