K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^

xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)

4 tháng 5 2017

\(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)

\(\Leftrightarrow a^2+b^2+c^2\ge2a+2b+2c-3\)

\(\Leftrightarrow a^2+b^2+c^2-2a-2b-2c+3\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

Ta có (a - b)2 >=0

=) a2 + b2 >= 2ab

Cộng 2 vế BĐT cho a2 + b2 ta được

a2 + b + a2 + b2 >= a2 + b2 +2ab

2( a2 + b2 ) >= ( a + b )2

2( a2 + b2 ) >= 1

a2 + b2  >= 1/2

Dấu '=' XRK : a=b

3 tháng 5 2016

bạn co biet bdt cosi k mk giai cho

1 tháng 9 2015

ban cu lam tu tu thoi. mai xong cung dc k sao dau

22 tháng 3 2016

a) <=>a2+b2-2ab>=0

<=>(a-b)2>=0

.

18 tháng 3 2016

1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0

<=> (a -b)2 +(b -c)2 + (c -a)>= 0 (bđt đúng với mọi a, b, c)

2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)

tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)\(\frac{ca}{b}+\frac{bc}{a}\ge2c\)

Cộng từng vế 3 bđt trên suy ra đpcm

3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)= 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0

=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2 

=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c

=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0

Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2

18 tháng 3 2016

Mọi người giúp  mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí.  Thanhks trước. 

Bài 1: cho a, b, c thuộc  R.

Chứng minh a2 + b+ c2  >=  ab+ac+bc

Bài 2:cho a, b, c >0.

 Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c

Bài 3: cho a, b, c thoả mãn a+b=c.  

Chứng  minh  a +b4 +c =2a2b2 +2b2c2 + 2a2c2