Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2+2.3\left(x+y\right)+9+y^2-4=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+\left(y-2\right)\left(y+2\right)=0\)
Để phương trình có nghiệm tương đương với x+y+3=0 \(\Leftrightarrow\) x+y=-3
và y+2=0 hoặc y-2=0 và y=-2 hoặc 2
Vậy GTLN của P=x+y+2=-3+2=-1 tại y=-2 ;x = -1 hoặc y=2 ; x=-5
\(3xy-1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+1\right)\ge0\)
\(\Leftrightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)
Và \(xy+x+y+1=4xy\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4xy\)
Ta có: \(\frac{3x}{y\left(x+1\right)}-\frac{1}{y^2}=\frac{3xy-x-1}{y^2\left(x+1\right)}=\frac{y}{y^2\left(x+1\right)}=\frac{1}{y\left(x+1\right)}\)
\(M=\frac{1}{y\left(x+1\right)}+\frac{1}{x\left(y+1\right)}=\frac{2xy+x+y}{4x^2y^2}=5xy-1\)
Xét hàm số \(f\left(t\right)=\frac{20t^2-8t\left(5t-1\right)}{16t^4}=\frac{8t-20t^2}{16t^4}\le0\)
Nên hàm số nghịch biến với \(t\ge1\)
\(\Rightarrow f\left(t\right)_{Max}=f\left(1\right)=1\Leftrightarrow M_{Max}=1\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\Rightarrow a+b+ab=3\)
Ta có:\(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\Rightarrow ab\le1\)
Suy ra
\(M=\frac{ab}{a+1}+\frac{ab}{b+1}=ab\left(\frac{a+1+b+1}{ab+a+b+1}\right)=\frac{ab.\left(5-ab\right)}{4}=\frac{-\left[\left(ab\right)^2-2ab+1\right]+3ab+1}{4}=\frac{-\left(ab-1\right)^2+3ab+1}{4}\le1\)Dấu bằng xảy ra khi a=b=1
\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{6}{\sqrt{x}+1}\)
b) Để P nguyên tố thì \(\frac{6}{\sqrt{x}+1}\) nguyên tố
Để \(P\inℕ^∗\) thì \(\sqrt{x}+1\inƯ\left(6\right)\)
Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)
Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy ...........
khó quá em mới lớp 6 thôi