\(\sqrt{a+1}+\sqrt{b+1}=4\)

tìm Min P = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

Áp dụng BĐT Bunhiacopski:

\(\left(\sqrt{a+1}+\sqrt{b+1}\right)^2\le\left(1^2+1^2\right)\left(a+1+b+1\right)=2\left(a+b+2\right)\\ \Leftrightarrow a+b+2\ge\dfrac{16}{2}=8\\ \Leftrightarrow a+b\ge6\)

Áp dụng BĐT: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow P=a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}=\dfrac{\left(a+b\right)^4}{8}\ge\dfrac{6^4}{8}=162\)

Do đó \(P_{min}=162\Leftrightarrow a=b=3\)

 

3 tháng 11 2021

em cảm ơn 

20 tháng 10 2021

Ta có: \(4=\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\)

\(\le\frac{a+b}{2}+\frac{a+1}{2}+\frac{b+1}{2}+1\Rightarrow a+b\ge2\)

Do đó \(P=\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\ge2\)

Dấu bằng xảy ra khi a = b = 1

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

17 tháng 1 2016

kingstorm3333
maianh2207

5 tháng 12 2018

giải tạm 1 bài z -,-

2) Cauchy-Schwarz dạng Engel :

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{6}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)

Chúc bạn học tốt ~

8 tháng 9 2019

4/ Ta có: \(6=a+b+c+ab+bc+ca\ge3\left(\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{abc}\right)\)

Đặt \(\sqrt[3]{abc}=t\Rightarrow t^2+t\le2\Rightarrow t\le1\Rightarrow t^3=C=abc\le1\)

Vậy...

5/ \(D\le\left(\frac{a+b+c}{3}\right)^3.\left[\frac{2\left(a+b+c\right)}{3}\right]^3=\frac{512}{729}\)

Vậy ...

P/s: Em không chắc

NV
22 tháng 2 2020

5.

ĐKXĐ: \(0\le x\le1\)

\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)

\(P\ge\sqrt{1-x+x}+\sqrt{1+x+x}=1+\sqrt{1+2x}\ge2\)

\(\Rightarrow P_{min}=2\) khi \(x=0\)

6.

\(3=a^2+b^2+ab\ge2ab+ab=3ab\Rightarrow ab\le1\)

\(3=a^2+b^2+ab\ge-2ab+ab=-ab\Rightarrow ab\ge-3\)

\(\Rightarrow-3\le ab\le1\)

\(a^2+b^2+ab=3\Rightarrow a^2+b^2=3-ab\)

Ta có:

\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab\)

\(P=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)

Đặt \(ab=x\Rightarrow-3\le x\le1\)

\(P=-x^2-7x+9=21-\left(x+3\right)\left(x+4\right)\le21\)

\(\Rightarrow P_{max}=21\) khi \(x=-3\) hay \(\left(a;b\right)=\left(-\sqrt{3};\sqrt{3}\right)\) và hoán vị

\(P=-x^2-7x+9=1+\left(1-x\right)\left(x+8\right)\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=1\) hay \(a=b=1\)

NV
22 tháng 2 2020

1. \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)

\(\Leftrightarrow x+y+z+\frac{1}{3}\left(x+y+z\right)^2\ge6\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Leftrightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Leftrightarrow x+y+z\ge3\)

Vậy \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge\frac{1}{3}.3^2=3\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

2. Áp dụng BĐT Bunhiacopxki:

\(Q^2\le3\left(2a+bc+2b+ac+2c+ab\right)\)

\(Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)

\(Q^2\le6\left(a+b+c\right)+\left(a+b+c\right)^2=16\)

\(\Rightarrow Q\le4\Rightarrow Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

23 tháng 9 2019

Dat \(P=\sqrt{a^4+1}+\sqrt{b^4+1}\)

Ta co:\(\sqrt{\left(a^4+1\right)\left(1+16\right)}\ge a^2+4\)

\(\sqrt{\left(b^4+1\right)\left(1+16\right)}\ge b^2+4\)

\(\Rightarrow\sqrt{17}\left(\sqrt{a^4+1}+\sqrt{b^4}+1\right)\ge a^2+b^2+8\ge\frac{1}{2}+8=\frac{17}{2}\)

\(\Leftrightarrow\sqrt{a^4+1}+\sqrt{b^4+1}\ge\frac{17}{2\sqrt{17}}\)

Dau '=' ra khi \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2\sqrt{17}}\)khi \(a=b=\frac{1}{2}\)

23 tháng 9 2019

Cảm ơn bạn nhưng lúc chiều vừa được cô giảng rồi (-_-)

3 tháng 2 2021

Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)

Đẳng thức xảy ra khi a = b = c = 1

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

21 tháng 10 2020

helpppppppp