Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a - 1 = x > 0; b - 1 = y > 0
\(A=\frac{\left(x+1\right)^2}{x}+\frac{\left(y+1\right)^2}{y}\\ A=\frac{x^2+2x+1}{x}+\frac{y^2+2y+1}{y}\\ A=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+4\)
Với x > 0; y > 0, theo BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}\Rightarrow x+\frac{1}{x}\ge2\)
\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}\Rightarrow y+\frac{1}{y}\ge2\)
\(\Rightarrow A\ge8\)
Dấu "=" xảy ra khi và chỉ khi x = y = 1 => a = b = 2
Vậy...
Dat \(P=\sqrt{a^4+1}+\sqrt{b^4+1}\)
Ta co:\(\sqrt{\left(a^4+1\right)\left(1+16\right)}\ge a^2+4\)
\(\sqrt{\left(b^4+1\right)\left(1+16\right)}\ge b^2+4\)
\(\Rightarrow\sqrt{17}\left(\sqrt{a^4+1}+\sqrt{b^4}+1\right)\ge a^2+b^2+8\ge\frac{1}{2}+8=\frac{17}{2}\)
\(\Leftrightarrow\sqrt{a^4+1}+\sqrt{b^4+1}\ge\frac{17}{2\sqrt{17}}\)
Dau '=' ra khi \(a=b=\frac{1}{2}\)
Vay \(P_{min}=\frac{17}{2\sqrt{17}}\)khi \(a=b=\frac{1}{2}\)
Ta có: \(4=\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\)
\(\le\frac{a+b}{2}+\frac{a+1}{2}+\frac{b+1}{2}+1\Rightarrow a+b\ge2\)
Do đó \(P=\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu bằng xảy ra khi a = b = 1
Áp dụng bđt bunhiacopski có:
\(\left(a^4+1\right)\left(1+4^2\right)\ge\left(a^2+4\right)^2\)
=> \(\sqrt{a^4+1}\ge\sqrt{\frac{\left(a^2+4\right)^2}{1+4^2}}=\frac{a^2+4}{\sqrt{17}}\)(1)
Tương tự cx có: \(\sqrt{b^4+1}\ge\frac{b^2+4}{\sqrt{17}}\) (2)
Từ (1),(2) => \(F\ge\frac{a^2+b^2+8}{\sqrt{17}}\)
Có (a+2)(b+2)=\(\frac{25}{4}\)
=> \(ab+2a+2b+4=\frac{25}{4}\) <=> \(ab+2a+2b=\frac{9}{4}\)
Áp dụng cosi có:
\(ab\le\frac{a^2+b^2}{2}\)
\(2a\le2\left(a^2+\frac{1}{4}\right)\)
\(2b\le2\left(b^2+\frac{1}{4}\right)\)
=> \(\frac{a^2+b^2}{2}+2a^2+\frac{1}{2}+2b^2+\frac{1}{2}\ge ab+2a+2b=\frac{9}{4}\)
<=> \(\frac{a^2+b^2+4a^2+4b^2}{2}\ge\frac{9}{4}-\frac{1}{2}-\frac{1}{2}=\frac{5}{4}\)
<=> \(\frac{5\left(a^2+b^2\right)}{2}\ge\frac{5}{4}\)
<=> \(a^2+b^2\ge\frac{1}{2}\)
Thay \(a^2+b^2\ge\frac{1}{2}\) vào F có:
\(F\ge\frac{\frac{1}{2}+8}{\sqrt{17}}\)
<=> F \(\ge\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra <=>\(a=b=\frac{1}{2}\)
từ gt \(4\left(a+1\right)\left(b+1\right)=9\)
Áp dụng hằng bđt đúng ta được \(\left(a+b+2\right)^2\ge4\left(a+1\right)\left(b+1\right)\ge9\Rightarrow a+b\ge1\)
BTP : \(\sqrt{x^2+y^2}+\sqrt{q^2+z^2}\ge\sqrt{\left(x+q\right)^2+\left(y+z\right)^2}\)với mọi xyzq
c/m : dùng bunhia hoặc bình phương roioif tương đương
\(\)Chú ý cả điểm rơi để tách sao cho hợp lí nhé,
thân
Áp dụng BĐT Min-côp-xki, ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}=\sqrt{4+\left(a^2+b^2\right)^2}\)
Mà \(\left(a+1\right)\left(b+1\right)=\dfrac{9}{4}\Rightarrow a+b+ab=\dfrac{5}{4}\)
Vì \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow a+b+\dfrac{\left(a+b\right)^2}{4}\ge\dfrac{5}{4}\)
\(\Rightarrow4m+m^2-5\ge0\Leftrightarrow\left(m-1\right)\left(m+5\right)\ge0\Rightarrow m\ge1\)(với m=a+b)
\(\Rightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\dfrac{1}{4}\Rightarrow\sqrt{4+\left(a^2+b^2\right)^2}\ge\dfrac{\sqrt{17}}{2}\)
=> \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\dfrac{\sqrt{17}}{2}\)
kingstorm3333
maianh2207