\(\dfrac{9}{4}\). tìm min P=\(\sqrt{1+a^4}+\sqrt{1+b^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Áp dụng BĐT Min-côp-xki, ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}=\sqrt{4+\left(a^2+b^2\right)^2}\)

\(\left(a+1\right)\left(b+1\right)=\dfrac{9}{4}\Rightarrow a+b+ab=\dfrac{5}{4}\)

\(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow a+b+\dfrac{\left(a+b\right)^2}{4}\ge\dfrac{5}{4}\)

\(\Rightarrow4m+m^2-5\ge0\Leftrightarrow\left(m-1\right)\left(m+5\right)\ge0\Rightarrow m\ge1\)(với m=a+b)

\(\Rightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\dfrac{1}{4}\Rightarrow\sqrt{4+\left(a^2+b^2\right)^2}\ge\dfrac{\sqrt{17}}{2}\)

=> \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\dfrac{\sqrt{17}}{2}\)

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

17 tháng 1 2016

kingstorm3333
maianh2207

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 3:

Áp dụng BĐT Bunhiacopxky ta có:

\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)

\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)

\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)

\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)

Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)

\(A_{\max}=5\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 4:

Lời giải:

\(B=\sqrt{x-1}+\sqrt{5-x}\)

\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)

Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)

Mặt khác \(B\geq 0\)

Kết hợp cả hai điều trên suy ra \(B\geq 2\)

Vậy \(B_{\min}=2\).

Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)

---------------------------------------

\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)

\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)

Vì \(x^2\geq 0\forall x\in\mathbb{R}\)

\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)

Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)

Vậy \(A_{\min}=2\Leftrightarrow x=0\)

19 tháng 9 2018

giúp tớ với ^.^

19 tháng 9 2018

Góp ý chút. Cậu đăng tầm hai câu nhỏ một bài sẽ có nhiều người làm hơn đó.

Bài 1 :

Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)

Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)

Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)

Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)

Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)

Bài 2 :

Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)

Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)

Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)

Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

23 tháng 9 2019

Dat \(P=\sqrt{a^4+1}+\sqrt{b^4+1}\)

Ta co:\(\sqrt{\left(a^4+1\right)\left(1+16\right)}\ge a^2+4\)

\(\sqrt{\left(b^4+1\right)\left(1+16\right)}\ge b^2+4\)

\(\Rightarrow\sqrt{17}\left(\sqrt{a^4+1}+\sqrt{b^4}+1\right)\ge a^2+b^2+8\ge\frac{1}{2}+8=\frac{17}{2}\)

\(\Leftrightarrow\sqrt{a^4+1}+\sqrt{b^4+1}\ge\frac{17}{2\sqrt{17}}\)

Dau '=' ra khi \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2\sqrt{17}}\)khi \(a=b=\frac{1}{2}\)

23 tháng 9 2019

Cảm ơn bạn nhưng lúc chiều vừa được cô giảng rồi (-_-)

a: \(=\dfrac{10}{9}\left(\dfrac{2}{5}\sqrt{5}+\dfrac{1}{2}\sqrt{5}\right)=\dfrac{10}{9}\cdot\dfrac{9}{10}\sqrt{5}=\sqrt{5}\)

b: \(=\dfrac{4}{3}\sqrt{2}+\sqrt{2}+\dfrac{1}{6}\sqrt{2}=\dfrac{5}{2}\sqrt{2}\)

c: \(=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

d: \(=6\sqrt{a}+\dfrac{2}{3}\cdot\dfrac{1}{2}\sqrt{a}-3\sqrt{a}+7=\dfrac{10}{3}\sqrt{a}+7\)