Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a+1\vdots b$
$\Rightarrow 2b+5+1\vdots b$
$\Rightarrow 2b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại)
Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn)
Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại)
Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn)
Vậy.........
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(P=\dfrac{\left(b+c\right)}{b}.\dfrac{\left(a+b\right)}{a}.\dfrac{\left(a+c\right)}{c}=\dfrac{-a}{b}.\dfrac{-c}{a}.\dfrac{-b}{c}=-1\)
TH2: \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}=\dfrac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b+c}{2b}=\dfrac{1}{2}\\\dfrac{c-a+b}{2a}=\dfrac{1}{2}\\\dfrac{a-c+b}{2c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+c=2b\\c+b=2a\\a+b=2c\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Lời giải:
Áp dụng
$\frac{3a}{2}=\frac{2b}{5}=\frac{a}{\frac{2}{3}}=\frac{b}{\frac{5}{2}}=\frac{a+b}{\frac{2}{3}+\frac{5}{2}}=\frac{19}{\frac{19}{6}}=6$
$\Rightarrow a=6:\frac{3}{2}=4$
$\Rightarrow b = 6:\frac{2}{5}=15$
$\Rightarrow 2a-3b = 2.4-3.15=-37$