K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2023

\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)

4 tháng 5 2023

`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`

`= (2x^3 -x^3)+x^2+(-x+3x) +5`

`= x^3 +x^2 + 2x+5`

`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`

`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`

`= -x^3 -x^2+3x+10`

`b,M(x)=P(x)+Q(x)`

`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5+(-x^3)  -x^2+3x+10`

`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`

`= 5x+15`

`N(x)=P(x)-Q(x)`

`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`

`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`

`=2x^2 -x-5`

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

a: P(x)=x^3-x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3

N(x)=P(x)-Q(x)

=x^3-x^2+x+2+x^3-x^2+x-1

=2x^3-2x^2+2x+1

c: M(x)=3

=>M(x) ko có nghiệm

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)

b: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c: Vì \(2x^2+3>0\forall x\)

nên M(x) vô nghiệm

8 tháng 3 2022

a, \(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=-x^3+x^2-x+1\)

b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )

vì 2x^2 >= 0 ; 2x^2 + 3 > 0 

Vậy giả sử là sai hay đa thức M(x) ko có nghiệm 

20 tháng 6 2020

\(a.\)

\(P(x)=2x^3-2x+x^2-x^3+3x+2\)

\(\Rightarrow P(x)=(2x^3-x^3)+x^2+(-2x+3x)+2\)

                \(=x^3+x^2+x+2\)

\(Q(x)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(\Rightarrow Q(x)=(3x^3-4x^3)+(-4x^2+5x^2)+(3x-4x)+1\)

                  \(=-x^3+x^2-x+1\)

b.

\(M(x)=P(x)+Q(x)\)

\(\Rightarrow M(x)=(x^3+x^2+x+2)+(-x^3+x^2-x+1)\)

\(=(x^3-x^3)+(x^2+x^2)+(x-x)+(2+1)\)

\(=2x^2+3\)

\(N(x)=P(x)-Q(x)\)

\(\Rightarrow N(x)=(x^3+x^2+x+2)-(-x^3+x^2-x+1)\)

\(=(x^3+x^3)+(x^2-x^2)+(x+x)+(2-1)\)

\(=2x^3+2x+1\)

c.Ta có ; \(M(x)=2x^3+3=0\)

\(\Leftrightarrow2x^3+3=0\)

\(\Rightarrow2x^3\)       \(=-3\)

\(\Rightarrow x^3\)          \(=\frac{-3}{2}\)   

Vậy \(M(x)\)ko có nghiệm

học tốt ,  cho mình nha

Nhớ kết bạn zới mình

20 tháng 6 2020

Nhớ chọn đáp án mình nha

`a,`

`P(x)=2x^3-2x+x^2-x^3+3x+2`

`= (2x^3-x^3)+x^2+(-2x+3x)+2`

`= x^3+x^2+x+2`

`b,`

`H(x)+Q(x)=P(x)`

`-> H(x)=P(x)-Q(x)`

`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`

`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`

`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`

`= 2x^2+2x+1`

Vậy, `H(x)=2x^2+2x+1.`

NV
7 tháng 5 2023

a.

\(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=x^3-x^2-x+1\)

b.

\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)

\(\Rightarrow H\left(x\right)=2x^2+2x+1\)

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)