Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
ta rút gọn đa thức
F(x)= 2x^3 + 3x^2 - 2x + 3
G(x)= 3x^2 - 7x + 2
H(x)= (2x^3 + 3x^2 - 2x + 3) - (3x^2 - 7x + 2)
= 2x^3 + 3x^2 - 2x + 3 - 3x^2 + 7x - 2
= 2x^3 + 5x + 1
P(x)= (2x^3 + 3x^2 - 2x + 3) + (3x^2 - 7x + 2)
= 2x^3 + 6x^2 - 9x + 5
Bạn tự làm được, bài cực kì cơ bản. Mình hd thôi.
Bạn lấy 2 đa thức trừ cho nhau, nhớ để ngoặc để phá dấu không bị nhầm.
Câu b thì nghiệm của đa thức chính là tìm x sao cho H(x)=0
Ta có : f(x) - g(x) = (3x2 - x + 1) - (2x2 - 3x - 7)
=> f(x) - g(x) = 3x2 - x + 1 - 2x2 + 3x + 7
=> f(x) - g(x) = x2 + 2x + 1 + 7
=> f(x) - g(x) = (x + 1)2 + 7
Mà ; (x + 1)2 \(\ge0\forall x\)
Nên : f(x) - g(x) = (x + 1)2 + 7 \(\ge7\forall x\)
Suy ra : f(x) - g(x) = (x + 1)2 + 7 \(>0\forall x\)
Vậy đa thức f(x) - g(x) vô nhiệm