K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

Với `x \ne -5,x \ne -1` có:

`A=[x+2]/[x+5]+[-5x-1]/[x^2+6x+5]-1/[1+x]`

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+5)(x+1)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+5)(x+1)]`

`A=[x^2-3x-4]/[(x+5)(x+1)]`

`A=[(x-4)(x+1)]/[(x+5)(x+1)]`

`A=[x-4]/[x+5]`

24 tháng 5 2022

\(=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+x+5x+5}-\dfrac{1}{x+1}\\ =\dfrac{x+2}{x+5}+\dfrac{-5x-1}{\left(x^2+x\right)+\left(5x+5\right)}-\dfrac{1}{x+1}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{x\left(x+1\right)+5\left(x+1\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{\left(x+1\right)\left(x+5\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+2x+x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+x-4x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x^2+x\right)-\left(4x+4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x\left(x+1\right)-4\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x-4}{x+5}\)

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)

19 tháng 11 2017

\(Câu\text{ }1:\)

\(\text{ a) }A=\dfrac{4}{x^2+2}+\dfrac{3}{2-x^2}-\dfrac{12}{4-x^4}\\ A=\dfrac{4\left(2-x^2\right)}{\left(x^2+2\right)\left(2-x^2\right)}+\dfrac{3\left(2+x^2\right)}{\left(2-x^2\right)\left(2+x^2\right)}-\dfrac{12}{\left(2+x^2\right)\left(2-x^2\right)}\\ A=\dfrac{4\left(2-x^2\right)+3\left(2+x^2\right)-12}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{8-4x^2+6+3x^2-12}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-x^2-2}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-\left(x^2+2\right)}{\left(x^2+2\right)\left(2-x^2\right)}\\ A=\dfrac{-1}{2-x^2}\)

\(\text{b) }Để\text{ }A=-3\\ thì\Rightarrow\dfrac{-1}{2-x^2}=-3\\ \Leftrightarrow2-x^2=3\\ \Leftrightarrow x^2=-1\\ \Leftrightarrow x\text{ }không\text{ }có\text{ }giá\text{ }trị\left(vì\text{ }x^2\ge0\forall x\right)\\ \text{ }Vậy\text{ }để\text{ }A=-3\text{ }thì\text{ }x\text{ }không\text{ }có\text{ }giá\text{ }trị.\)

\(\text{c) }Ta\text{ }có:\text{ }A=\dfrac{-1}{2-x^2}\\ A=\dfrac{1}{x^2-2}\\ x^2\ge0\forall x\\ \Rightarrow x^2-2\ge-2\forall x\\ \Rightarrow A=\dfrac{1}{x^2-2}\le-\dfrac{1}{2}\\ Dấu\text{ }"="\text{ }xảy\text{ }khi:\\ x^2=0\\ \Leftrightarrow x=0\\\text{ }Vậy\text{ }A_{\left(Max\right)}=-\dfrac{1}{2}\text{ }khi\text{ }x=0\)

19 tháng 11 2017

\(Câu\text{ }2:\)

\(\text{a) }B=\dfrac{1}{x}+\dfrac{1}{x+5}+\dfrac{x-5}{x\left(x+5\right)}\\ B=\dfrac{x+5}{x\left(x+5\right)}+\dfrac{x}{\left(x+5\right)x}+\dfrac{x-5}{x\left(x+5\right)}\\ B=\dfrac{x+5+x+x-5}{x\left(x+5\right)}\\ B=\dfrac{3x}{x\left(x+5\right)}\\ B=\dfrac{3}{x+5}\left(\text{*}\right)\)

\(\text{b) }Ta\text{ }có:\text{ }\left|x-1\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\\ Ta\text{ }lại\text{ }có:\text{ }B=\dfrac{3}{x+5}\\ \RightarrowĐKCĐ:x+5\ne0\\ \Rightarrow x\ne-5\\ \Rightarrow x=7\text{ }thỏa\text{ }mãn\text{ }với\text{ }điều\text{ }kiện\text{ }của\text{ }biến.\\ x=-5\text{ }không\text{ }thỏa\text{ }mãn\text{ }với\text{ }điều\text{ }kiện\text{ }của\text{ }biến.\\ Thay\text{ }x=7\text{ }vào\text{ }\left(\text{*}\right),ta\text{ }được:\text{ }B=\dfrac{3}{7+5}=\dfrac{3}{12}=\dfrac{1}{4}\\ \text{ }Vậy\text{ }với\text{ }x=7\text{ }thì\text{ }B=\dfrac{1}{4}\\ với\text{ }x=-5\text{ }thì\text{ }B\text{ }không\text{ }có\text{ }giá\text{ }trị.\)

\(\text{c) }Ta\text{ }có:B=\dfrac{3}{x+5}\\ \RightarrowĐể\text{ }B\in Z\\ thì\Rightarrow3⋮x+5\\ \Rightarrow x+5\inƯ_{\left(3\right)}\\ Mà\text{ }Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\\ Ta\text{ }lập\text{ }bảng\text{ }xét\text{ }giá\text{ }trị:\)

\(x+5\) \(-3\) \(-1\) \(1\) \(3\)
\(x\) \(-8\) \(-6\) \(-4\) \(-2\)

\(\Rightarrow x\in\left\{-8;-6;-4;-2\right\}\\ Vậy\text{ }để\text{ }B\in Z\\ thì x\in\left\{-8;-6;-4;-2\right\}\)

26 tháng 12 2017

a, Rút gọn Biểu thức:

A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)

= 0 \(:\dfrac{2x}{x2+2x}\)

b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)

Thay tất cả x= -4

=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)

= -16 : \(\dfrac{1}{3}\)

= -18

26 tháng 12 2017

Hỏi đáp Toán

a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^2+x+1}{x^2-x+1}\)

b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>A>0 với mọi x<>-1

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

1)

Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)

\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)

2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)

\((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)

Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.

29 tháng 11 2022

Bài 3:

a: DKDXĐ: x<>1

b: \(=\dfrac{x^2+2+x^2-x-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{2}{x-1}=\dfrac{x^2-2x+1}{\left(x-1\right)^2}\cdot\dfrac{2}{x^2+x+1}=\dfrac{2}{x^2+x+1}\)

c: Để C lớn nhất thì \(A=x^2+x+1_{MIN}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu = xảy ra khi x=-1/2

28 tháng 6 2017

Phép trừ các phân thức đại số

26 tháng 11 2017

\(P=\dfrac{4}{x+5}-\dfrac{3}{x-5}+\dfrac{15-5x}{x^2-25}\)

\(=\dfrac{4}{x+5}-\dfrac{3}{x-5}+\dfrac{15-5x}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{4\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}-\dfrac{3\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{15-5x}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{4x-20-3x-15+15-5x}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=-\dfrac{4}{x-5}\)

b, Thay x = 8 vào biểu thức P ,có :

\(-\dfrac{4}{8-5}=-\dfrac{4}{3}\)

Vậy tại x = 8 giá trị của biểu thức P là \(-\dfrac{4}{3}\)