Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia hình chữ nhật 3x4 thành 5 phần gồm 3 hình ngồi nhà , zà 2 hình nửa ngồi nhà ( ko biết zẽ hình )
. KHi đó 6 điểm chắc chắn nằm trong 5 hình này , mà 6=5.1+1 , nên sẽ có 2 điểm trong 1 hính ( theo nguyên lý Dirichlet) , giả sử 2 điểm đó là A,B . Dễ CM được AB\(\le5\)( dùng pi-to-go nha man) . dpcm
a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3
...................
b) chẳng hiu dau bai
c) = 5 ; =7 ; = 10
`#3107.101107`
Ta có:
`\sqrt{2} = 1,414213562 \approx 1,41`
`\sqrt{5} - 1 = 2,236067977 - 1 \approx 2,24 - 1 = 1,24`
`7/5 = 1,4`
`=> 1,24 < 1,4 < 1,41 = 1,41`
`=>` Số nhỏ nhất trong dãy số trên là `1,24`
Vậy, số nhỏ nhất trong dãy số trên là `\sqrt{5} - 1.`
Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh
Câu 1 :
\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN
<=> 2(n - 1)2 + 3 có GTNN
Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3
=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1
Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ