Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết.Giả sử không có hai số nào có cùng số dư khi chia cho 100.Khi đó, có ít nhất 51 số chia cho 100 có số dư khác 50 là a1,a2,,,.....a51
Đặt bi = -ai(1≤i≤51).Xét 102 số ai;bi.Theo nguyên tắc đi-rích-lê thì tồn tại i#j sao cho ai=bj(mod 100)(tức là ai;bj có cùng số dư khi chia cho 100)
=> ai - bj chia hết cho 100.mà bj=-aj
=> ai+aj chia hết cho 100
Cách 2:
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết
Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100
vd:1,2,3,4,5,6 trong đó có số 6 chia hết cho 6
vd:11,12,13,14,15,16 trong đo có số 12 chia hết cho 6
Gọi `100` số nguyên đã cho là : `a_1`;`a_2`;...;`a_(100)`
Xét `100` tổng sau : `S_1` = `a_1`
`S_2` = `a_1 + a_2`
` .... `
`S_(100)` = ` a_1 + a_2 + ... + a_(100) `
` => ` Ta xét 2 TH sau
` + TH1` Trong 100 tổng trên `\exists` 1 tổng `\vdots` 100 `=> ` `Đpcm`
` +TH2 ` Trong 100 tổng trên `\cancel{exists}` 1 tổng nào `vdots` 100
Khi đó chia `100` tổng này cho `100` ta được các số dư `in` { 1;2;3;...;99}
Vì có `100` số dư mà chỉ có `99` khả năng dư nên theo nguyên lí Đi-rích-lê sẽ tồn tại ít nhau 2 số dư bằng nhau khi chia cho `100`
Giả sư `a_m` và `a_n` là 2 số đó ( giả sử : `a_m > a_n` )
Suy ra ` a_m - a_n \vdots 100 ` hay ` (a_1 + a_2 + ... + a_m) - (a_1 + a_2 + ... + a_n) \vdots 100 ` `=> ` ` a_(n+1) + a_(n+2) + ... + a_m \vdots 100 ` ` => đpcm `
` Chúc bạn hk tốt `
Gọi r1, r2, ... r52 là số dư khi chia mỗi số đó cho 100
mỗi ri (i = 1, 2, ..., 52) nhận giá trị từ các số 0, 1, 2, ..., 99 (có 100 số)
* nếu có 2 số ri bằng nhau thì như trên 2 số tương ứng có hiệu chia hết cho 100
* nếu 52 số ri đôi một khác nhau
ta thấy từ 1 đến 99 có 49 cặp số có tổng là 100 đó là (1, 99) ; (2, 98) .. (49,51)
theo nguyên lí Dirichlet trong 50 số chọn ra có ít nhất 2 số cùng 1 cặp
và như vậy cùng với 2 số 0 và 50 ta chọn 52 số ri khác nhau => có ít nhất 2 số ri, rj (i # j) thuộc cùng 1 cặp, giả sử là r1 và r2 có r1 + r2 = 100
a = 100m + r1 ; b = 100n + r2
=> a+b = 100(m+n) + r1 + r2 = 100(m+n) + 100 chia hết cho 100
Nếu có đúng một số chia hết cho 100, 51 số còn lại không chia hết cho 100
Xét 50 cặp số dư : (1;99);(2;98);(3;97);...;(50;50)
Theo nguyên lí Dirichlet, tồn tại hai số mà số dư của chúng khi chia cho 50 là một trong 50 cặp số trên.
Giả sử số dư của hai số đó rơi vào cặp (a;b) (với a+b=100)
- Nếu cả hai số cùng chia 100 dư a (hoặc dư b) thì hiệu của chúng chia hết cho 100
- Nếu hai số, một chia 100 dư a, một số chia 100 dư b thì tổng của chúng chia hết cho 100
Bài toán được chứng minh
Nếu cả 52 số đều không chia hết cho 100. Tương tự như trên
Ta có đpcm
Gọi `100` số nguyên đã cho là : `a_1`;`a_2`;...;`a_(100)`
Xét `100` tổng sau : `S_1` = `a_1`
`S_2` = `a_1 + a_2`
` .... `
`S_(100)` = ` a_1 + a_2 + ... + a_(100) `
` => ` Ta xét 2 TH sau
` + TH1` Trong 100 tổng trên `\exists` 1 tổng `\vdots` 100 `=> ` `Đpcm`
` +TH2 ` Trong 100 tổng trên `\cancel{exists}` 1 tổng nào `vdots` 100
Khi đó chia `100` tổng này cho `100` ta được các số dư `in` { 1;2;3;...;99}
Vì có `100` số dư mà chỉ có `99` khả năng dư nên theo nguyên lí Đi-rích-lê sẽ tồn tại ít nhau 2 số dư bằng nhau khi chia cho `100`
Giả sư `a_m` và `a_n` là 2 số đó ( giả sử : `a_m > a_n` )
Suy ra ` a_m - a_n \vdots 100 ` hay ` (a_1 + a_2 + ... + a_m) - (a_1 + a_2 + ... + a_n) \vdots 100 ` `=> ` ` a_(n+1) + a_(n+2) + ... + a_m \vdots 100 ` ` => đpcm `