Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phần đó lần lượt là :a,b,c.
Ta có: a/1/2=b/2/3=c/3/4 và a+b+c=552
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
a/1/2=b/2/3=c/3/4=a+b+c=1/2+2/3+3/4=552/23/12=2
⇒a=2.1/2=1
b=2.2/3=4/3
c=2.3/4=3/2
Vậy 3 phần đó là : 1 ; 4/3 ; 3/2.
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230
Gọi 3 phần đó là x,y,z
Vì x,y,z tỉ lệ thuận với \(\frac{1}{2};\frac{2}{3};\frac{3}{4}\)nên
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{2}{3}}=\frac{z}{\frac{3}{4}}\)
và \(x+y+z=552\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{2}{3}}=\frac{z}{\frac{3}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}}=\frac{552}{\frac{23}{12}}=288\)
Do đó \(x=288.\frac{1}{2}\Rightarrow x=144\)
\(y=288.\frac{2}{3}\Rightarrow y=192\)
\(z=288.\frac{3}{4}\Rightarrow z=216\)
vậy \(x=144;y=192;z=216\)
3 phần được chia ra của 2475 là tỉ lệ nghich với \(\dfrac{1}{22};\dfrac{1}{33};\dfrac{1}{44}\) nên 3 phần đó là \(22;33;44\)
Chia 2475 tỉ lệ nghịch với \(\dfrac{1}{22},\dfrac{1}{33}\) và \(\dfrac{1}{44}\) cũng là chia số đó tỉ lệ thuận với 22, 33 và 44. Ta có:
\(\dfrac{x}{22}=\dfrac{y}{33}=\dfrac{z}{44}=\dfrac{x+y+z}{22+33+44}=\dfrac{2475}{99}=25\)
Vậy: \(\Rightarrow\left\{{}\begin{matrix}x=22.25=550\\y=33.25=825\\z=44.25=1100\end{matrix}\right.\)
1: Gọi ba phần được chia lần lượt là a,b,c
Theo đề, ta có: 2a=3b=4c
=>2a/12=3b/12=4c/12
=>a/6=b/4=c/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{520}{13}=40\)
Do đó: a=240; b=160; c=120
a) Gọi ba phần cần chia của số 185 là a,b,c
ta có a+b+c= 185
Vì a,b,c tỉ lệ thuận với 3/5; 7/4 và 7/10
suy ra \(\frac{a}{\frac{3}{5}}=\frac{b}{\frac{7}{4}}=\frac{c}{\frac{7}{10}}=\frac{a+b+c}{\frac{3}{5}+\frac{7}{4}+\frac{7}{10}}=\frac{185}{\frac{61}{20}}=\frac{3700}{61}\)
suy ra a=2220/61; b=5475/61; c=2590/61
b) Gọi ba phần cần chia của số 480 là a,b,c
ta có a+b+c= 480
Vì a,b,c tỉ lệ nghịch với 5;4 và 10/3
nên 5a=4b=10/3c
hay \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{3}{10}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{3}{10}}=\frac{480}{\frac{3}{4}}=640\)
a=640:5=128
b= 640:4=160
c= 640.3/10=192
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
\(a+b+c=230\)
Và \(\hept{\begin{cases}a\cdot\frac{1}{3}=b\cdot\frac{1}{2}\\a\cdot\frac{1}{5}=c\cdot\frac{1}{7}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\\\frac{a}{5}=\frac{c}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{15}=\frac{b}{10}\\\frac{a}{15}=\frac{c}{21}\end{cases}}\Leftrightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\Rightarrow\frac{a+b+c}{15+10+21}=\frac{230}{46}=5\)
\(\Rightarrow\hept{\begin{cases}a=15\cdot5=75\\b=10\cdot5=50\\c=21\cdot5=105\end{cases}}\)
Chúc bạn học tốt :>
cảm ơn bạn, dattebayo <3<3