Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số đó lần lượt là:x,y,z
Theo đề bài, ta có: x:y:z = 3:4:9 <=> x/3=y/4=z/9
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/3=y/4=z/9=x+y+y/3+4+9=176/16=11
<=> x/3=11 => x=33
y/4=11 => y=44
z/9=11 => z=99
Vậy 3 số đó lần lượt là:33,44,99
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)
\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)
\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)
vậy 3 phần đó là:140, 105, 70
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
a phần 1/3=b phần 1/4=c phần 1/6 và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a phần 1/3=b phần 1/4=c / 1/6=a+b+c phần 1/3+1/4+1/6=315 phần 3/4=420
a phần 1/3=420⇒a=140
b phần 1/4=420⇒b=105
c phần 1/6=420⇒c=70
vậy............
đây là toán nâng cao lớp 7 đúng ko
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
gọi 3 phần lần lượt là a,b,c
=>\(\frac{a}{2}=\frac{b}{3}\)và \(a.3=c.5\)=>\(\frac{a}{2}=\frac{b}{3}\)và\(\frac{a}{5}=\frac{c}{3}\)
=>\(\frac{a}{2.5}=\frac{b}{3.5}\)và \(\frac{a}{5.2}=\frac{c}{3.2}\)
=>\(\frac{a}{10}=\frac{b}{15}\)và \(\frac{a}{10}=\frac{c}{6}\)
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)và a+b+c=930
áp dụng t/c dãy tỉ số bằng nhau
=>\(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{10+15+6}=\frac{930}{31}=30\)
=>\(\hept{\begin{cases}a=30.10\\b=30.15\\c=30.6\end{cases}}\)=>\(\hept{\begin{cases}a=300\\b=450\\c=180\end{cases}}\)
vậy 3 phần lần lượt là 300;450;180
a) Gọi 3 phần tỉ lệ thuận của 117 là a, b, c ( a,b,c >0 )
Theo bài ra ta có : a : b : c = 2 : 3 :4
<=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a + b + c = 117
Áp dunhj tính chất dãy tỉ số bằng nha ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{117}{9}=13\)
=> a = 26
b = 39
c = 52