Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi ba phần đó là a, b, c
a) Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 310
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)
+) \(\frac{a}{2}=31\Rightarrow a=62\)
+) \(\frac{b}{3}=31\Rightarrow b=93\)
+) \(\frac{c}{5}=31\Rightarrow c=155\)
Vậy 3 phần đó là 62; 93; 155
b) Ta có: \(2a=3b=5c\) và a + b + c = 310
\(\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)
\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{310}{31}=10\)
+) \(\frac{a}{15}=10\Rightarrow a=150\)
+) \(\frac{b}{10}=10\Rightarrow b=100\)
+) \(\frac{c}{6}=10\Rightarrow c=60\)
Vậy 3 phần đó là 150; 100; 60
gọi 3 phần dc chia bởi số 310 lần lượt là x, y, z
a) theo đề bài ta có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và X + Y + Z = 310
theo tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{310}{10}=31\)
\(\Rightarrow x=31.2=62\)
\(\Rightarrow y=31.3=93\)
\(\Rightarrow z=31.5=155\)
Zậy 3 phần dc chia bởi số 310 lần lượt là 62, 93, 155
b) theo đề bài ta có 2x = 3y = 5z và x + y + z = 310
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
theo tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{310}{31}=10\)
\(\Rightarrow x=15.10=150\)
\(\Rightarrow y=10.10=100\)
\(\Rightarrow z=6.10=60\)
Vậy 3 phần dc chia bởi số 310 lần lượt là 150, 100, 60
a)Vì x;y;z tỉ lệ thuận với 2;3;5 nên x:y:z=2:3:5
x:|===|===|
y:|===|===|===|
z:|===|===|===|===|===|
62;93;155
a) Gọi ba phần của số 6200 là a, b, c. Từ giả thiết ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(a+b+c=6200\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
\(\left\{{}\begin{matrix}\frac{a}{2}=620=>a=620.2=1240.\\\frac{b}{3}=620=>b=620.3=1860.\\\frac{c}{5}=620=>c=620.5=3100.\end{matrix}\right.\)
Vậy ba phần của số 6200 tỉ lệ thuận với 2, 3, 5 là: 1240; 1860; 3100.
b) Gọi ba phần của số 6200 là x, y, z. Từ giả thiết ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\) và \(x+y+z=6200\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{1}{2}}=6000=>x=6000.\frac{1}{2}=3000\\\frac{y}{\frac{1}{3}}=6000=>y=6000.\frac{1}{3}=2000\\\frac{z}{\frac{1}{5}}=6000=>z=6000.\frac{1}{5}=1200\end{matrix}\right.\)
Vậy ba phần của số 6200 tỉ lệ nghịch với 2, 3, 5 là 3000; 2000; 1200.
Chúc bạn học tốt!
Gọi 3 phần đó lần lượt là a, b, c( 0<a,b,c<6200)
Vì 3 phần đó lần lượt tỉ lệ thuận với 2,3,5 nên ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) Mà a+b+c =310
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
Do đó:
\(\frac{a}{2}=620=>a=1240\)
\(\frac{b}{3}=620=>b=1860\)
\(\frac{c}{5}=620=>c=3100\)
Vậy ...
b,Gọi 3 phần đó lần lượt là a,b,c( 0<a,b,c<6200)
Vì 3 phần đó lần lượt TLN với 2,3,5 nên ta có
a/ \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)
Mà a+ b+c= 6200
Áp dụng tc ...
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
Do đó:
\(\frac{a}{\frac{1}{2}}=6000=>a=3000\)
\(\frac{b}{\frac{1}{3}}=6000=>b=2000\)
\(\frac{c}{\frac{1}{5}}=6200=>c=1240\)
Vậy...
a) Gọi 3 phần đó lần lượt là x;y;z
=>x/2 = y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2=y/3=z/5=z+y+z/2+3+5 = 480/10 = 48
x/2 = 48 => x = 96
y/3 = 48 => y = 144
z/5=48 =>z=240
aaaaaaaaaaaaaaaaaaaaaa nha