K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!

sorry bạn nha!

4 tháng 5 2020

1. Gọi d là ƯC(n - 5 ; 3n - 14)

\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)

=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d

=> 3n - 15 - 3n + 14 chia hết cho d

=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(n - 5 ; 3n - 14) = 1

=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )

2. Gọi phân số cần tìm là \(\frac{a}{b}\)

Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)

=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)

\(\frac{a}{5}=8\Rightarrow a=40\)

\(\frac{b}{6}=8\Rightarrow b=48\)

=> \(\frac{a}{b}=\frac{40}{48}\)

Vậy phân số cần tìm là \(\frac{40}{48}\)

3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên

=> \(3⋮n-1\)

=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

=> \(n\in\left\{2;0;4;-2\right\}\)

12 tháng 5 2016

http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2

12 tháng 5 2016

2.

= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007

= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007

= 1/2 - 1/2007

= 2007/4014 - 2/4014

= 2005/4014

21 tháng 7 2020

Gọi \(d=UCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)

Suy ra phân số đã cho là phân số tối giản (đpcm)

Cái sau tương tự nha bạn

Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1

Vậy với x=1 thì C đạt giá trị nhỏ nhất

Cái sau tương tự nha bạn

21 tháng 7 2020

a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

6 tháng 5 2018

Bài 1:

Gọi UCLN (14n+17;21n+25) là d

ta có: 14 n +17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d

        21 +25 chia hết cho d => 2.( 21+25) chia hết cho d => 42n + 50 chia hết cho d

=> 42n + 51 - 42n - 50 chia hết cho d

=> 1 chia hết cho d

=> \(A=\frac{14n+17}{21n+25}\)là phân số tối giản

Bài 2:

Để B đạt giá trị lớn nhất => 5/ (x-3)^2 + 1 = 5

=> (x-3)^2 + 1 = 1

(x-3)^2           = 0 = 0^2

=> x - 3          = 0

x = 3

KL: x = 3 để B đạt giá trị lớn nhất

21 tháng 7 2016

Bài 1:

\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)

=>2 chia hết x+1

=>x+1 thuộc Ư(2)={1;-1;2;-2}

=>x thuộc {0;-2;1;-3}

Bài 2:

Gọi d là UCLN(2n+3;4n+8)

Ta có:

[2(2n+3)]-[4n+8] chia hết d

=>[4n+6]-[4n+8] chia hết d

=>-2 chia hết d =>d={1;2}

với d=2 ps ko tối giản ->d=1

Vậy ps tối giản

30 tháng 4 2017

Vào câu hỏi tương tự xem nha. Có bài y hệt đã giải

30 tháng 4 2017

tk cho mình rồi mình giải cho

20 tháng 2 2018

3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.