K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BC=2*AM=10cm

AC=căn 10^2-6^2=8cm

AH=6*8/10=4,8cm

BH=AB^2/BC=6^2/10=3,6cm

MH=căn 5^2-4,8^2=1,4cm

28 tháng 7 2023

giải chỉ tiết giúp em với ạ

28 tháng 7 2023

Vì `\triangle ABC` vuông tại `A` có `AM` là đường trung tuyến

    `=>AM=MC=1/2BC =>BC =40(cm)`

`@` Xét `\triangle ABC` vuông tại `A` có: `AC=\sqrt{BC^2 -AB^2}=32(cm)` (Py-ta-go)

`@` Mặt khác: Ta có `AH` là đường cao

    `=>BH=[AB^2]/[BC]` (Ht giữa cạnh và đường cao)

   `=>BH =14,4(cm)`

`@` Ta có: `HM =BC-BH-MC=5,6(cm)`

11 tháng 9 2016

BH=18 cm

MH=7 cm

MC= 25 cm

AH=24 cm

11 tháng 9 2016

BH = 18 cm ; MH = 7 cm ;                                          MC = 25 cm ; AH = 24 cm.                                        Chỉ có đáp án thôi nha! 

26 tháng 9 2021

AM = 3,125 , AD =15\(\sqrt{2}\): 7

 

27 tháng 9 2021

a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
AH^2=BH.HCAH2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{HB}=2,25cmHC=HBAH2=2,25cm.
BC=BH+HC=4+2,25=6,25cmBC=BH+HC=4+2,25=6,25cm.
AM=\dfrac{BC}{2}=3,125cmAM=2BC=3,125cm.
b) Áp dụng định lý Pi-ta-go ta có:
AB=\sqrt{AH^2+BH^2}=5cmAB=AH2+BH2=5cm.
 AC=\sqrt{BC^2-AB^2}=\sqrt{6,25^2-5^2}=3,75cmAC=BC2AB2=6,25252=3,75cm.
Theo tính chất tia phân giác của một góc:\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{3,75}=\dfrac{4}{3}DCBD=ACAB=3,755=34.

Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.

Từ đó ta có \dfrac{DE}{AB}=\dfrac{DC}{BC}=\dfrac{3}{7}\Rightarrow DE=\dfrac{3}{7}.5=\dfrac{15}{7}\left(cm\right)ABDE=BCDC=73DE=73.5=715(cm)

\Rightarrow AD=\dfrac{15\sqrt{2}}{7}\left(cm\right)AD=7152(cm).

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=35^2-21^2=784\)

hay AC=28cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

\(\Leftrightarrow\widehat{ACB}=37^0\)

30 tháng 7 2019

VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN

SUY RA AM=1/2*BC=1/2*10=5 CM

XÉT TAM GIÁC AHM VUÔNG TẠI H[VÌ AH LÀ ĐƯỜNG CAO]

SUY RA MH^2=AM^2-AH^2[PI TA GO]

MH^2=5^2-4,8^2

MH^2=1,96

MH=1,4

LẠI CÓ

BH=BM+MH=1/2*BC+1,4=5+1,4=6,4[CM]

TA CÓ:

CH=CM-MH=1/2BC-MH=5-1,4=3,6

TAM GIÁC ABH

AB^2=BH^2+AH^2

SUY RA AB^2=6,4^2+4,8^2=64          AB=8[CM]

TAM GIÁC ABC

AC^2=BC^2-AB^2

AC^2=10^2-8^2=36                    AC=6[CM]

29 tháng 10 2021

a, \(\tan B=\dfrac{4}{3}\Leftrightarrow\dfrac{AC}{AB}=\dfrac{4}{3}\Leftrightarrow AC=\dfrac{4}{3}AB\)

Áp dụng PTG: \(AB^2+AC^2=AB^2+\dfrac{16}{9}AB^2=\dfrac{25}{9}AB^2=BC^2=100\)

\(\Leftrightarrow AB^2=36\Leftrightarrow AB=6\left(cm\right)\\ \Leftrightarrow AC=6\cdot\dfrac{4}{3}=8\left(cm\right)\)

\(\tan B=\dfrac{4}{3}\approx\tan53^0\Leftrightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

b, Vì AM là trung tuyến ứng ch BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)