K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

Gọi E là giao điểm của CG với AB, F là giao điểm của AG với BC

Xét ΔABC có

G là trọng tâm

AG cắt BC tại F

Do đó: F là trung điểm của BC

Xét ΔABC có

G là trọng tâm

CG cắt AB tại E

Do đó: E là trung điểm của AB

Chọn mp(SEC) có chứa SG

Trong mp(SAB), gọi K là giao điểm của BM với SE

\(K\in SE\subset\left(SEC\right);K\in BM\subset\left(BMN\right)\)

=>\(K\in\left(SEC\right)\cap\left(BMN\right)\)

\(N\in SC\subset\left(SEC\right);N\in\left(BMN\right)\)

=>\(N\in\left(SEC\right)\cap\left(BMN\right)\)

=>\(\left(SEC\right)\cap\left(BMN\right)=KN\)

Gọi I là giao điểm của SG với KN

=>I là giao điểm của SG với mp(BMN)

NV
7 tháng 1 2024

Bài này ứng dụng bài toán đồng phẳng đã chứng minh cho em hồi sáng:

4 điểm M, A', B', C', D' đồng phẳng nên với điểm S bất kì ta có:

\(\overrightarrow{SM}=m.\overrightarrow{SA'}+n.\overrightarrow{SB'}+p.\overrightarrow{SC'}\)

Khi đó \(m+n+p=1\)

Giải như sau:

Đặt \(\dfrac{SA}{SA'}=x;\dfrac{SB}{SB'}=y;\dfrac{SC}{SC'}=z\)

\(\Rightarrow\overrightarrow{SA}=x.\overrightarrow{SA'};\overrightarrow{SB}=y.\overrightarrow{SB'};\overrightarrow{SC}=z.\overrightarrow{SC'}\)

Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{GS}+\overrightarrow{SA}+\overrightarrow{GS}+\overrightarrow{SB}+\overrightarrow{GS}+\overrightarrow{SC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=3\overrightarrow{SG}\)

\(\Rightarrow x.\overrightarrow{SA'}+y.\overrightarrow{SB'}+z.\overrightarrow{SC'}=3\overrightarrow{SG}=6\overrightarrow{SM}\) (do M là trung điểm SG)

\(\Rightarrow\dfrac{x}{6}.\overrightarrow{SA'}+\dfrac{y}{6}.\overrightarrow{SB'}+\dfrac{z}{6}.\overrightarrow{SC'}=\overrightarrow{SM}\)

Do M;A';B';C' đồng phẳng 

\(\Rightarrow\dfrac{x}{6}+\dfrac{y}{6}+\dfrac{z}{6}=1\) \(\Rightarrow x+y+z=6\)

\(\Rightarrow\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}=6\)

Với bài toán trắc nghiệm (hoặc cần kiểm chứng kết quả) chỉ cần chọn trường hợp đặc biệt là (P) song song đáy, khi đó theo Talet thì A', B', C' lần lượt là trung điểm các cạnh nên ta dễ dàng tính ra tổng cần tính là 2+2+2=6

7 tháng 1 2024

Anh ơi! Đoạn Do M;A'B'C' đồng phẳng nên \(\overrightarrow{SA'}+\overrightarrow{SB'}+\overrightarrow{SC'}=\overrightarrow{SM}\) ạ 

 

 

NV
23 tháng 10 2021

undefined

NV
23 tháng 10 2021

a.

Nối BN kéo dài cắt AD tại E

\(\left\{{}\begin{matrix}E\in\left(BMN\right)\\E\in\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow E=\left(BMN\right)\cap\left(SAD\right)\)

\(\left\{{}\begin{matrix}M\in SA\in\left(SAD\right)\\M\in\left(BMN\right)\end{matrix}\right.\) \(\Rightarrow M=\left(BMN\right)\cap\left(SAD\right)\)

\(\Rightarrow EM=\left(BMN\right)\cap\left(SAD\right)\)

b.

Gọi F là giao điểm EM và SD

Trong mp (SCD), nối FN kéo dài cắt SC kéo dài tại G

\(\Rightarrow G=SC\cap\left(BMN\right)\)

26 tháng 10 2023

S A B C D M N O G K H P Q

a/

Ta có

\(S\in\left(SAC\right);S\in\left(SBD\right)\)

Trong mp (ABCD) gọi O là giao của AC và BD

\(O\in AC\Rightarrow O\in\left(SAC\right);O\in BD\Rightarrow O\in\left(SBD\right)\)

\(\Rightarrow SO\in\left(SAC\right)\) và \(SO\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)

b/

Trong mp (ABCD) Từ G dựng đường thẳng // AC cắt BC tại K

Xét tg SAC có

SM=AM (gt); SN=CN (gt) => MN là đường trung bình của tg SAC

=> MN//AC

Mà GM//AC

=> MN//GK mà \(G\in\left(GMN\right)\Rightarrow GK\in\left(GMN\right)\) (Từ 1 điểm trong mặt phẳng chỉ dựng được duy nhất 1 đường thẳng thuộc mặt phẳng đó và // với 1 đường thẳng cho trươc thuộc mặt phẳng)

\(\Rightarrow K\in\left(GMN\right);K\in BC\) => K llaf giao của BC với (GMN)

c/

Ta có

\(KN\in\left(GMN\right);KN\in\left(SBC\right)\) => KN là giao tuyến của (GMN) với (SBC)

Trong (ABCD) KG cắt AB tại H

\(KG\in\left(GMN\right)\Rightarrow KH\in\left(GMN\right)\)

\(KG\in\left(ABCD\right)\Rightarrow KH\in\left(ABCD\right)\)

=> KH là giao tuyến của (GMN) với (ABCD)

Ta có 

\(HM\in\left(SAB\right);HM\in\left(GMN\right)\) => HM là giao tuyến của (GMN) với (SAB)

Trong mp(SAC) gọi P là giao của SO với MN

\(P\in MN\Rightarrow P\in\left(GMN\right)\)

Trong mp(SBD) Nối G với P cắt SD tại Q

\(\Rightarrow GP\in\left(GMN\right)\Rightarrow Q\in GMN\)

\(\Rightarrow MQ\in\left(GMN\right)\) mà \(MQ\in\left(SAD\right)\) => MQ là giao tuyến của (GMN) với (SAD)

Ta có

\(NQ\in\left(GMN\right);NQ\in\left(SCD\right)\) => NQ là giao tuyến của (GMN) với (SCD)

=> thiết diện của hình chóp bị cắt bởi (GMN) là đa giác HMQNK

 

 

 

 

7 tháng 10 2023

a, đề là gì vậy bạn 

b, Xét (ABCD) kẻ AI giao CD tại I

Xét (SCD); (KAG) có 

K là điểm chung t1 ; I là điểm chung t2 

=> KI là giao tuyến 2 mp 

=> Nối IK cắt SD tại M

c, Ta có M = (SAIM) giao (GHK)

E = (HKAI) giao (GHK) 

G = (HKAI) giao (SAIM) 

mà ME ko song song vs MG 

=> M;E;G thẳng hàng 

22 tháng 9 2023

Tham khảo:

a) Tam giác SAC có: MN cắt AC tại E mà AC thuộc mp (ABC)

Do đó: E là giao điểm của MN và (ABC)

b) Ta có: B thuộc hai mặt phẳng (BMN) và (ABC)

          E thuộc hai mặt phẳng (BMN) và (ABC)

Suy ra: BE là giao tuyến của hai mặt phẳng (BMN) và (ABC)

7 tháng 10 2023

Qua G kẻ đường thẳng song song AC lần lượt cắt AD, AB, BC tại E, F, N.

FN⇒�� là giao tuyến của (GHK) và (ABCD)

Nối EH kéo dài cắt SD tại M M⇒� là giao điểm SD và (NHK)

c/ Gọi P là giao điểm của FN kéo dài và CD

Ta có AC//EP��//�� ΔDACΔDEP⇒Δ���∼Δ���, mà BD qua trung điểm của AC BD⇒�� qua trung điểm của EP G⇒� là trung điểm EP

HK//EPΔMEPΔMHK��//��⇒Δ���∼Δ���

Mà MG qua trung điểm của EP  MG qua trung điểm của HK hay G,M,E thẳng hàng

 

9 tháng 8 2018

17 tháng 1 2018

Chọn đáp án A

Trong mặt phẳng (ABC), gọi E = NP ∩ AC

Khi đó Q chính là giao điểm của SC với EM

Áp dụng định lý Menelaus vào tam giác ABC ta có:

Áp dụng định lý Menelaus vào tam giác SAC ta có: