Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(a^2+2ab+b^2-ac-bc\)
\(=\left(a+b\right)^2-c\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-c\right)\)
Câu 2:
\(5x^2-5y^2-10x+10y\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+5y-10\right)\)
\(=5\left(x-y\right)\left(x+y-2\right)\)
Câu 3:
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left[\left(x-y\right)^2-4z^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Câu 4:
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
Câu 5:
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
Câu 6:
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
Câu 7:
\(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)
\(=3xy\left(x+y\right)\)
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)
\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)
Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)
Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)
\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết
Vậy \(\sqrt{7}\) không phải là số hữu tỉ
\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=\left(\sqrt{2}\right)^2+2\sqrt{2.3}+\left(\sqrt{3}\right)^2=2+2\sqrt{6}+3\) \(=5+2\sqrt{6}\)
\(\left(\sqrt{3}+2\right)^2=\left(\sqrt{3}\right)^2+2\sqrt{3}.2+2^2=3+4\sqrt{3}+4=7+4\sqrt{3}\)
Câu 1:
\(a^2+2ab+b^2-2a-2b+1\)
\(=\left(a+b\right)^2-2\left(a+b\right)+1\)
\(=\left(a+b-1\right)^2\)
Câu 2:
Xét BToán \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(4x^4-3x^2-1=0\)
\(4x^4-4x^2+x^2-1=0\)
\(4x^2.\left(x^2-1\right)+\left(x^2-1\right)=0\)
\(\left(4x^2+1\right)\left(x^2-1\right)=0\)
\(\Rightarrow x^2-1=0\) vì \(4x^2+1>0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
\(2x^2-5x+2=0\)
\(x^2-\frac{5}{2}x+1=0\)
\(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+1=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}=0\)
\(\left(x+\frac{5}{4}-\frac{3}{4}\right)\left(x+\frac{5}{4}+\frac{3}{4}\right)=0\)
\(\left(x+\frac{1}{2}\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=-2\end{cases}}\)
bài đâu bạn??
cô biết