Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}=?\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...+\dfrac{1}{256}-\dfrac{1}{512}-\dfrac{1}{512}\)
\(=1-\dfrac{1}{512}\)
\(=\dfrac{511}{512}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+.........+\dfrac{1}{256}+\dfrac{1}{512}=\dfrac{511}{512}\)
Bài bạn trên cách trình bày mk ko hiểu lắm! mk làm lại nhé!
Đặt :
\(S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.........+\dfrac{1}{2^8}+\dfrac{1}{2^9}\)
\(\Leftrightarrow2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^8}\)
\(\Leftrightarrow2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow S=1-\dfrac{1}{2^9}\)
\(\Leftrightarrow S=1-\dfrac{1}{512}=\dfrac{511}{512}\)
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
\(\Rightarrow x\left(2+4+8+...+512\right)=511\)
\(\Rightarrow\dfrac{\left(512+2\right).255}{2}.x=511\)
\(\Rightarrow65535x=511\)
\(\Rightarrow x=\dfrac{511}{65535}\)
Vậy.................
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
\(\Rightarrow x.\left(2+4+8+...+512\right)=511\)
\(\Rightarrow\dfrac{\left(512+2\right).255}{2}.x=511\)
\(\Rightarrow65535x=511\)
\(\Rightarrow x=\dfrac{511}{65535}\)
Vậy \(x=\dfrac{511}{65535}\)
Đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{1}{128}+\dfrac{1}{256}\)
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}+\dfrac{1}{2^8}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}+\dfrac{1}{2^8}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}+\dfrac{1}{2^8}\right)\)\(A=1-\dfrac{1}{2^8}=1-\dfrac{1}{256}=\dfrac{255}{256}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
a) \(\dfrac{1}{3}+\dfrac{3}{8}-\dfrac{7}{12}\)
\(=\dfrac{17}{24}-\dfrac{7}{12}\)
\(=\dfrac{1}{8}\)
b) \(\dfrac{-3}{14}+\dfrac{5}{8}-\dfrac{1}{2}\)
\(=\dfrac{23}{56}-\dfrac{1}{2}\)
\(=\dfrac{-5}{56}\)
c) \(\dfrac{1}{4}-\dfrac{2}{3}-\dfrac{11}{18}\)
\(=\dfrac{-5}{12}-\dfrac{11}{18}\)
\(=\dfrac{-37}{36}\)
d) \(\dfrac{1}{4}+\dfrac{5}{12}-\dfrac{1}{13}-\dfrac{7}{8}\)
\(=\dfrac{2}{3}-\dfrac{1}{13}-\dfrac{7}{8}\)
\(=\dfrac{23}{39}-\dfrac{7}{8}\)
\(=\dfrac{-89}{312}\)
Đây này má Ran mori
a) \(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)
\(=5+\dfrac{1}{7}-3-\dfrac{3}{11}-2-\dfrac{1}{7}-1-\dfrac{8}{11}\)
\(=\left(5-3-2-1\right)+\left(\dfrac{1}{7}-\dfrac{3}{11}-\dfrac{1}{7}-\dfrac{8}{11}\right)\)
\(=-1+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\)
\(=-1+0-1=-2\)
a)\(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)
= \(\left(5+\dfrac{1}{7}-3+\dfrac{3}{11}\right)-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)
= \(5-\dfrac{1}{7}+3-\dfrac{3}{11}-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)
= \(\left(5-3-2-1\right)+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{8}{11}-\dfrac{3}{11}\)
= \(-1+2+\dfrac{5}{11}\)
= \(1+\dfrac{5}{11}=\dfrac{1}{1}+\dfrac{5}{11}=\dfrac{11}{11}+\dfrac{5}{11}=\dfrac{16}{11}\)
Vậy :câu a) = \(\dfrac{16}{11}\)
1. Tính nhanh:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}\)
\(=\dfrac{3}{8}\)
2. Tính nhanh
Đặt \(A\) = \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A\) \(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{13}\)
\(2A=\dfrac{10}{39}\)
\(A=\dfrac{10}{39}:2\)
\(A=\dfrac{5}{39}\)
a) \(1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{3-2}{6}=\dfrac{1}{6}\)
\(\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{4-3}{12}=\dfrac{1}{12}\)
\(\dfrac{1}{4}-\dfrac{1}{5}=\dfrac{5-4}{20}=\dfrac{1}{20}\)
\(\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{6-5}{30}=\dfrac{1}{30}\)
b) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+-\dfrac{1}{6}\)\(=1+-\dfrac{1}{6}\)
\(=\dfrac{5}{6}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)
\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)
\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)
Đặt A=12+14+18+...+1256+1512A=12+14+18+...+1256+1512
⇒2A=1+12+14+...+1128+1256⇒2A=1+12+14+...+1128+1256
⇒A=2A−A=1+12+14+...+1128+1256−12−14−18−...−1256−1512⇒A=2A−A=1+12+14+...+1128+1256−12−14−18−...−1256−1512
⇒A=1−1512=511512