Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có:
\(\left\{{}\begin{matrix}a+c+2=-4\\-\dfrac{4-4ac}{4a}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-6-c\\4ac-4=24a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-6-c\\4c\left(-6-c\right)-4-24\left(-6-c\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-c-6\\-24c+4c^2-4+144+24c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-c-6\\4c^2+140=0\end{matrix}\right.\)(vô lý)
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
- a = 1 > 0 hàm số đồng biến trên R.
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)
- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)
\(\Leftrightarrow x^2-3x+2-m=0\)
Có \(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)
- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)
Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)
- Ta có : \(OA^2+OB^2=10\)
\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)
\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)
\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)
\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)
\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)
\(\Leftrightarrow2m^2+10m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)
- Kết hợp ĐK (1) => m = 0 ( TM )
Vậy ...
Phương trình d: \(y=k\left(x-1\right)+1=kx-k+1\)
Phương trình hoành độ giao điểm (C) và (d):
\(\dfrac{2x+4}{1-x}=kx-k+1\)
\(\Leftrightarrow kx^2-\left(2k-3\right)x+k+3=0\)
\(\Delta=\left(2k-3\right)^2-4k\left(k+3\right)=-24k+9\ge0\Rightarrow k\le\dfrac{3}{8}\)
\(\left\{{}\begin{matrix}x_M+x_N=\dfrac{2k-3}{k}\\x_M.x_N=\dfrac{k+3}{k}\end{matrix}\right.\)
\(MN^2=\left(x_M-x_N\right)^2+\left(y_M-y_M\right)^2=90\)
\(\Leftrightarrow\left(k^2+1\right)\left(x_M-x_N\right)^2=90\)
\(\Leftrightarrow\left(k^2+1\right)\left[\left(x_M+x_N\right)^2-4x_Mx_N\right]=90\)
\(\Leftrightarrow\left(k^2+1\right)\left[\dfrac{\left(2k-3\right)^2}{k^2}-\dfrac{4\left(k+3\right)}{k}\right]=90\)
\(\Leftrightarrow\left(k^2+1\right)\left(3-8k\right)=30k^2\)
\(\Leftrightarrow8k^3+27k^2+8k-3=0\)
\(\Leftrightarrow\left(k+3\right)\left(8k^2+3k-1\right)=0\)
\(\Leftrightarrow...\)
Cho cos x + sin x =\(\dfrac{3}{4}\) . Tính giá trị biểu thức A = \(\left|sinx-cosx\right|\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=-4\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\)
để đồ thị của hàm số 𝑦 = 3𝑚𝑥 + 𝑚 − 5 đi qua điểm A( -2 ; 4) thì:
\(4=3m.\left(-2\right)+m-5\\ \Rightarrow4=-6m+m-5\\ \Rightarrow9=-5m\\ \Rightarrow m=-\dfrac{9}{5}\)
Thay x=-2 và y=4 vào (d), ta được:
-6m+m-5=4
=>-5m=9
hay m=-9/5