Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
a, \(\left|2x-\frac{3}{5}\right|+7=9\)
=> \(\left|2x-\frac{3}{5}\right|=2\) => \(\orbr{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{13}{10}\\x=-\frac{7}{10}\end{cases}}\)
b, \(\left|5-3x\right|-1=\frac{1}{2}\) <=> \(\left|5-3x\right|=\frac{3}{2}\)
=> \(\orbr{\begin{cases}5-3x=\frac{3}{2}\\5-3x=-\frac{3}{2}\end{cases}=>\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{13}{6}\end{cases}}}\)
a.[2x-3/5]=9-7
[2x-3/5]=2 \(\hept{\begin{cases}2x=\frac{13}{5}\\2x=-\frac{7}{5}\end{cases}}\) \(\hept{\begin{cases}x=\frac{13}{10}\\x=\frac{7}{10}\end{cases}}\)
\(\hept{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)
[5-3x]-1=1/2
[5-3x]=1/2
\(\hept{\begin{cases}5-3x=\frac{1}{2}\\5-3x=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}3x=\frac{9}{2}\\3x=\frac{11}{2}\end{cases}}\)
\(\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{11}{6}\end{cases}}\)
đó chỉ cần vậy là xong
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
\(C=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\left[\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right]\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}\left[\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{x\left(x-3\right)\left(x+3\right)}\right]\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)
=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{3\left(2x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)
=>\(C=\frac{x}{x-3}-\frac{3}{x-3}\)
=>\(C=\frac{x-3}{x-3}\)
=>C=1
\(A=\frac{x\left|x-2\right|}{x^2+8x-20}=\frac{x\left|x-2\right|}{x^2-2x+10x-20}=\frac{x\left|x-2\right|}{x\left(x-2\right)+10\left(x-2\right)}=\frac{x\left|x-2\right|}{\left(x+10\right)\left(x-2\right)}\)
Xét \(x-2\ge0\Leftrightarrow x\ge2\) ta có :
\(A=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}=\frac{x}{x+10}\)
Xét \(x-2< 0\Leftrightarrow x< 2\) ta có :
\(A=\frac{x\left(2-x\right)}{\left(x+10\right)\left(x-2\right)}=\frac{-x}{x+10}\)
bạn làm hộ mk câu 2 luôn đc ko
mk đang cần gấy câu đấy