K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

\(A=\frac{x\left|x-2\right|}{x^2+8x-20}=\frac{x\left|x-2\right|}{x^2-2x+10x-20}=\frac{x\left|x-2\right|}{x\left(x-2\right)+10\left(x-2\right)}=\frac{x\left|x-2\right|}{\left(x+10\right)\left(x-2\right)}\)

Xét \(x-2\ge0\Leftrightarrow x\ge2\) ta có :

\(A=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}=\frac{x}{x+10}\)

Xét \(x-2< 0\Leftrightarrow x< 2\) ta có :

\(A=\frac{x\left(2-x\right)}{\left(x+10\right)\left(x-2\right)}=\frac{-x}{x+10}\)

21 tháng 2 2017

bạn làm hộ mk câu 2 luôn đc ko

mk đang cần gấy câu đấy

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn

11 tháng 9 2016

a)\(\left(2x-3\right)\left(x+1\right)< 0\)

\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\)  hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại)  hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)

\(\Leftrightarrow-1< x< \frac{3}{2}\)

b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)

c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)

Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow x=4\)

11 tháng 9 2016

đề dúng đấy , bạn làm sai rồi

30 tháng 9 2016

làm đc câu c thôi à dc ko bạn

a, \(\left|2x-\frac{3}{5}\right|+7=9\) 

=> \(\left|2x-\frac{3}{5}\right|=2\) => \(\orbr{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\) 

=> \(\orbr{\begin{cases}x=\frac{13}{10}\\x=-\frac{7}{10}\end{cases}}\) 

b, \(\left|5-3x\right|-1=\frac{1}{2}\) <=> \(\left|5-3x\right|=\frac{3}{2}\) 

=> \(\orbr{\begin{cases}5-3x=\frac{3}{2}\\5-3x=-\frac{3}{2}\end{cases}=>\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{13}{6}\end{cases}}}\)

20 tháng 9 2018

a.[2x-3/5]=9-7

[2x-3/5]=2                                           \(\hept{\begin{cases}2x=\frac{13}{5}\\2x=-\frac{7}{5}\end{cases}}\)            \(\hept{\begin{cases}x=\frac{13}{10}\\x=\frac{7}{10}\end{cases}}\)

\(\hept{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)

[5-3x]-1=1/2

[5-3x]=1/2

\(\hept{\begin{cases}5-3x=\frac{1}{2}\\5-3x=-\frac{1}{2}\end{cases}}\)

\(\hept{\begin{cases}3x=\frac{9}{2}\\3x=\frac{11}{2}\end{cases}}\)

\(\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{11}{6}\end{cases}}\)

đó chỉ cần vậy là xong

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

16 tháng 7 2016

\(C=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\left[\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right]\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}\left[\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{x\left(x-3\right)\left(x+3\right)}\right]\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{3\left(2x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)

=>\(C=\frac{x}{x-3}-\frac{3}{x-3}\)

=>\(C=\frac{x-3}{x-3}\)

=>C=1