Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Gọi x(km/h) là vận tốc của oto thứ nhất
Đk: x>0
Khi đó:
Vì ôtô 2 đến sau ôtô thứ nhất 1 giờ nên thời gian của oto 2 là:5(h)
Vận tốc của oto thứ hai là: x-5(km/h)
Quãng đường oto 1 là: 4x(km)
Quãng đường ôtô 2 là: 5(x-5) (km)
=> Ta có PT:4x=5(x-5)
Giải PT:4x=5(x-5)
<=> 4x-5x=-25
<=> -x=-25
<=> x=25(N)
Vậy quãng đường AB là: 4.25=100(km)
Bài 2
a)
Xét \(\Delta ABC\) và \(\Delta MBN\) có:
\(\widehat{A}=\widehat{M}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta MBN\left(g.g\right)\)
b)
Xét \(\Delta ABC\) và \(\Delta MDC\) có:
\(\widehat{A}=\widehat{M}=90^o\)
\(\widehat{C}\) là góc chung
\(\Rightarrow\Delta ABC\) đồng dạng với \(\Delta MDC\left(g.g\right)\)
a: Xét ΔOAB và ΔOCD có
OA/OC=OB/OD
góc O chung
=>ΔOAB đồng dạng với ΔOCD
b: Xét ΔMDA và ΔMBC có
góc MAD=góc MCB
góc DMA=góc BMC
=>ΔMDA đồng dạng với ΔMBC
=>MD/MB=MA/MC
=>MD*MC=MB*MA
c: ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=C OAB/ C OCD
=>C OAB/C OCD=OA/OC=8/6=4/3
=>C OAB/4=C OCD/3=38,5/7=5,5
=>C OAB=22; C OCD=16,5
=>AB+OA+OB=22 và CD+OC+OD=16,5
=>AB=22-8-4=10cm và CD=16,5-6-3=16,5-9=7,5cm
Câu 1 :
a, \(\left|3-2x\right|=4x+1\)
Với \(x\le\frac{3}{2}\)pt có dạng : \(3-2x=4x+1\Leftrightarrow-6x=-2\Leftrightarrow x=\frac{1}{3}\)( tm )
Với \(x>\frac{3}{2}\)pt có dạng : \(3-2x=-4x-1\Leftrightarrow2x=-4\Leftrightarrow x=-2\)( ktm )
Vậy tập nghiệm của phương trình là S = { 1/ }
b, \(\left|3-5x\right|=2x+1\)
Với \(x\le\frac{3}{5}\)pt có dạng : \(3-5x=2x+1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)( tm )
Với \(x>\frac{3}{5}\)pt có dạng : \(3-5x=-2x-1\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)( tm )
Vậy tập nghiệm của phương trình là S = { 2/7 ; 4/3 }
Câu 2 :
\(2021-13m\)và \(2020-13n\)
Ta có : \(m< n\Rightarrow-13m>-13n\Leftrightarrow-13n+2021>-13n+2020\)
Gọi thời gian đi từ A-B là t1
Gọi thời gian đi từ B-A là t2
Đổi: 10h45ph=10,75 (giờ)
Ta có: AB=BA <=>30.t1=40.t2 => 3t1=4t2 => t1=\(\frac{4t_2}{3}\) (1)
Lại có: t1+t2+2=10,75 <=> t1+t2=8,75 . Thay (1) vào ta được:
\(\frac{4t_2}{3}\)+t2=8,75 <=> 7t2=26,25 => t2=3,75 (giờ)
=> Độ dài quãng đường AB là: AB=40.3,75=150 (km)