K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Mai Ngọc Trâm

Câu 1 : Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath

Câu 2 :

Ta có : abc = 100 x a + 10 x b + c = n2 ‐ 1 ﴾1﴿

cba = 100 x c + 10 x b + a = n2 ‐ 4n + 4 ﴾2﴿

Lấy ﴾1﴿ trừ ﴾2﴿ ta được :

99 x ﴾a – c﴿ = 4n – 5

Suy ra 4n ‐ 5 chia hết 99

Vì 100 \(\le\) abc \(\le\) 999 nên :

100 ≤ n2 ‐1 ≤ 999 => 101 ≤ n2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n ‐ 5 ≤ 119

Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 675

27 tháng 5 2017

Câu 1: Ta có: A= \(\dfrac{a^3+2a^2-1}{a^3+2a^2+2a+1}\) =\(\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)

a. Điều kiện đúng \(a\ne-1\)

Rút gọn biểu thức \(\dfrac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ƯCLN của a2 + a - 1 và a2 + a - 1 và a2 + a + 1

Vì a2 + a - 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ

Mặt khác 2 =[ a2+a +1 – (a2 + a – 1) ] chia hết d

Nên d = 1 tức là a2 + a + 1 và a2 + a - 1 nguyên tố cùng nhau

Câu 2: \(\overline{\text{abc}}\) = 100a + 10 b + c = n2 - 1 (1)
\(\overline{\text{cba}}\) = 100c + 10 b + c = n2 – 4n + 4 (2)
Từ (1) và (2) \(\Rightarrow\) 99(a-c) = 4 n – 5 \(\Rightarrow\) 4n – 5 chia hết 99 (3)
Mặt khác: 100[ n2-1[999\(\Leftrightarrow\)101 [n2 [1000\(\Leftrightarrow\)11 [n[31\(\Leftrightarrow\)39[4n-5

[119] (3)

Từ (3) và (4) \(\Rightarrow\) 4n – 5 = 99 \(\Rightarrow\) n = 26
Vậy: \(\overline{\text{abc}}\) = 675

21 tháng 6 2016

a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A -1

Rút gọn đúng cho.

b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1\)\(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d

Nên d = 1 tức là \(a^2+a+1\)\(a^2+a-1\)là nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

21 tháng 6 2016

thực sự là toán lớp 6 ko ?

?"

19 tháng 10 2016

a. \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b. Trước hết ta nhận xét: \(\hept{\begin{cases}a^2+a-1=a\left(a+1\right)-1\\a^2+a+1=a\left(a+1\right)+1\end{cases}}\). Vì a(a + 1) là số chẵn nên cả hai số trên đều không chia hết cho 2.

Gọi d là ƯCLN của \(a^2+a-1\) và \(a^2+a+1\). Khi đó d khác 2 và \(a^2+a-1-\left(a^2+1+1\right)=-2\) chia hết d. Do d max và d khác 2 nên d = 1.

Vậy với a nguyên thì phân số \(A=\frac{a^2+a-1}{a^2+a+1}\) tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

cái này rất dễ mình tin bạn có thể giải được mà

7 tháng 3 2019

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)\(\left(a\ne-1\right)\)

b)Gọi d là ước chung lớn nhất của a2 +a-1 và a2+a+1

Vì a2 +a-1=a(a+1)-1 là lẻ nên d cũng là số lẻ.

Tự làm tiếp nhé,đến đây chắc bạn làm đc chứ,hok tốt!

7 tháng 3 2019

\(A=\frac{a^2+a-1}{a^2+a+1}\)

Vì: \(a^2+a=a\left(a+1\right)\)

a là số nguyên 

=> a, a+1 là 2 số nguyên liên tiếp 

=> a.(a+1) là số chẵn

=> \(a^2+a+1,a^2+a-1\)là 2 số nguyên lẻ liên tiếp

Mà 2 số lẻ liên tiếp nguyên tố cùng nhau 

(chúng minh: (2k+1, 2k+3)=d

=> 2k+1 chia hết cho d, 2k+3 chia  hết cho d

=> 2k+3-(2k+1)=2 chia hết cho d

=> d=\(2\)hoặc d=\(1\)

Nếu d=\(2\)=> 2k+1 chia hêt cho 2 vô lí

=> d=\(1\))

=> (\(a^2+a+1,a^2+a-1\))=1

Vậy A là phân số tối giản