K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây là cách làm của thầy mk:

Nối đường thẳng AB ta được  pt có dạng  :y = ax + b

Vì B(x2;y2) và A(x1;y1) Thuộc AB 

=> y2-y1 = ax2+b-(ax1-b) = ax2+b-ax1-b

Hay y2-y1 = a(x2-x1) (a khác 0,vì nếu a = 0 thì y2=y1)

Ta lại có: y-y1=ax+b-ax- b = a(x-x1)

=>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      (vì a khác 0)

Vậy....

Còn đây là cách hiểu của mk:

Ta có A(x1;y1) => Hàm số A có dạng y1=ax+b

B(x2;y2) => Hàm số B có dạng y2=ax2+b

=> y2-y1 = ax2 + b - ax1 - b = ax2-ax1

hay y2-y1 = a(x2-x1)

Từ đề ta lại có  : 

y -y1 = ax + b - ax1-b = ax - ax1 

Hay y-y1 = a(x-x1)

 =>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      

Ê chỗ cách làm của thầy mk là nối đoạn thẳng nhé.

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

27 tháng 3 2019

câu a bạn thay x=-1 ,y= 3 vào (d) nha

câu b)

Xét pt hoành độ giao điểm :

\(2x-a+1=\frac{1}{2}x^2\Rightarrow x^2-4x+2a-2=0\)

Bạn tự xét delta để tìm điều kiện nha

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=4\\x_1\cdot x_2=2a-2\end{cases}}\)

\(x_1x_2\left(y_1+y_2\right)+48=0\Rightarrow\frac{1}{2}x_1x_2\left(x_1^2+x_2^2\right)+48=0\)

\(\Rightarrow\frac{1}{2}x_1x_2\left(x_1+x_2\right)^2-2\cdot\frac{1}{2}x_1^2x_2^2+48=0\)

\(\Rightarrow\frac{1}{2}\left(2a-2\right)\cdot4^2-\left(2a-2\right)^2+48=0\)

\(\Rightarrow-4a^2+24a+28=0\)

\(\Rightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)