K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây là cách làm của thầy mk:

Nối đường thẳng AB ta được  pt có dạng  :y = ax + b

Vì B(x2;y2) và A(x1;y1) Thuộc AB 

=> y2-y1 = ax2+b-(ax1-b) = ax2+b-ax1-b

Hay y2-y1 = a(x2-x1) (a khác 0,vì nếu a = 0 thì y2=y1)

Ta lại có: y-y1=ax+b-ax- b = a(x-x1)

=>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      (vì a khác 0)

Vậy....

Còn đây là cách hiểu của mk:

Ta có A(x1;y1) => Hàm số A có dạng y1=ax+b

B(x2;y2) => Hàm số B có dạng y2=ax2+b

=> y2-y1 = ax2 + b - ax1 - b = ax2-ax1

hay y2-y1 = a(x2-x1)

Từ đề ta lại có  : 

y -y1 = ax + b - ax1-b = ax - ax1 

Hay y-y1 = a(x-x1)

 =>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      

Ê chỗ cách làm của thầy mk là nối đoạn thẳng nhé.

20 tháng 2 2020

đề thấy có chút thiếu dữ liệu câu đầu ấy

mỗi đội đều chơi 9 trận với 9 đội khác và không có trận hòa

Do đó : x1 + y1 = x2 + y2 = .... = x10 + y10

Ta có : ( x12 + x22 + ... + x102 ) - ( y12 + y22 + ... + y102 )

= ( x12 - y12 ) + ( x22 - y22 ) + ... + ( x102 - y102 )

= 9 ( x1 - y1 + x2 - y2 + ... + x10 - y10 )

= 9 [ ( x1 + x2 + .... + x10 ) - ( y1 + y2 +...+ y10 ) ]

= 9 . 0

= 0

Vậy ....

28 tháng 1 2019

Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !

28 tháng 1 2019

Bạn tham khảo nha ! Lick : https://olm.vn/hoi-dap/detail/185482794083.html

Câu hỏi của Kudo - Toán lớp 9 - Học toán với OnlineMath

Chúc bạn học tốt !

31 tháng 7 2018

bài này hình như có trong đề olympic Toán Trung Quốc 2003 

Sử dụng Cauchy-Schwarz ta có:

\(\left(ay_1+by_2+cy_3+dy_4\right)^2\le\left(ab+cd\right)\left[\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\right]\)\(=\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\)

\(=\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4\)

\(\left(ax_4+bx_3+cx_2+dx_1\right)^2 \le\left(ab+cd\right)\left[\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\right]\)\(=\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\)

\(=\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4\)

Đặt:  \(P=\left(ay_1+by_2+cy_3+dy_4\right)^2+\left(ax_4+bx_3+cx_2+dx_1\right)^2-2\left(\frac{a^2+b^2}{ab}+\frac{c^2+d^2}{cd}\right)\)

Từ các BĐT trên ta có:

\(P\le\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4+\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4-2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{c}\right)\)

\(=-\left(\frac{a}{b}x_1^2+\frac{b}{a}x_2^2\right)-\left(\frac{c}{d}x_3^2+\frac{d}{c}x_4^2\right)-\left(\frac{a}{b}y_4^2+\frac{b}{a}y_3^2\right)-\left(\frac{c}{d}y_2^2+\frac{d}{c}y_1^2\right)+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4\)

\(\le-2x_1x_2-2x_3x_4-2y_4y_3-2y_2y_1+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4=0\)

=> đpcm

9 tháng 8 2018

chuẩn nè, hôm trc thầy mk chữa, mk thấy bài này cx có ở trg đó, tks bạn nhiều nhé <3

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

8 tháng 4 2020

9.3

\(pt:x^2+4x-1\)

\(\Delta=4^2-4.1.\left(-1\right)=20\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\\x_2=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\end{matrix}\right.\)

\(a.A=\left|x_1\right|+\left|x_2\right|=\left|-2+\sqrt{5}\right|+\left|-2-\sqrt{5}\right|=-2+\sqrt{5}+2+\sqrt{5}=2\sqrt{5}\)

b. Theo hệ thức Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1.x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x^2_2=16-2x_1x_2=16-2.1=14\\x_1^2x_2^2=1\end{matrix}\right.\)

\(B=x_1^2\left(x_1^2-7\right)+x_2^2\left(x_2^2-7\right)=x_1^4-7x_1^2+x_2^4-7x^2_2=\left(x_1^2\right)^2+\left(x_2^2\right)^2-7\left(x^2_1+x^2_2\right)=\left(x^2_1+x^2_2\right)^2-2x_1^2x_2^2-7\left(x_1^2+x_2^2\right)=14^2-2.1-7.14=96\)

8 tháng 4 2020

9.1 Để phương trình có hai nghiệm phân biệt thì :

\(\Delta'=2^2-2=2>0\)

Theo hệ thức Viei, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2\end{matrix}\right.\)

a) \(S=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1.x_2}{x_1+x_2}=\frac{2}{4}=\frac{1}{2}\)

b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{4^2-2.2}{2}=6\)

c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{\left(x_1+x_2\right)(\left(x_1+x_2\right)^2-3xy)}{\left(x_1.x_2\right)^3}=5\)

\(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}=\frac{\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)}{\left(x_1x_2\right)^2}=10\)

9 tháng 6 2019

a) Phương trình hoành độ giao điểm của (d) và (P) là

           \(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)

Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)

Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)

Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m

Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)

b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:

\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)

Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)

     \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)

Vậy...........................

9 tháng 6 2019

a/

hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình

\(x^2-\left(m-1\right)x-4=0\)

den ta = \(\left(m-1\right)^2+16>0\forall m\)

=> phương trình luôn có 2 nghiệm phân biệt với mọi m

b/

vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p ) 

=> \(y_1=x_1^2\)

    \(y_2=x_2^2\)

theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)

ta có \(y_1+y_2=y_1.y_2\)

<=> \(x_1^2+x_2^2=x_1^2x_2^2\)

<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)

<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)

<=> \(m^2-2m+1+8-16=0\)

<=> \(m^2-2m-7=0\)

<=>\(\left(m-1\right)^2-8=0\)

<=> \(\left(m-1\right)^2=8\)

<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)

<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

CHÚC BẠN HỌC TỐT

20 tháng 1 2019

Có \(\Delta=9-8=1>0\)

Nên pt luôn có 2 nghiệm

Theo hệ thức Vi-ét có

\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)

*Lập pt bậc 2 ẩn y

Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)

                            \(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                             \(=3+\frac{3}{2}\)

                             \(=\frac{9}{2}\)

  \(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)

                    \(=x_1x_2+1+1+\frac{1}{x_1x_2}\)

                    \(=2+2+\frac{1}{2}\)

                    \(=\frac{9}{2}\)

Vậy pt cần lập có dạng \(y^2-Sy+P=0\)

                            \(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)

                           \(\Leftrightarrow2y^2-9y+9=0\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:

Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:

$y^2+\frac{5}{6}y-\frac{1}{2}=0$

$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)