\(3x^2+5x-6=0\) có 2 nghiệm phân biệt: x1;x2.Ko gi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:

Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:

$y^2+\frac{5}{6}y-\frac{1}{2}=0$

$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)

20 tháng 1 2019

Có \(\Delta=9-8=1>0\)

Nên pt luôn có 2 nghiệm

Theo hệ thức Vi-ét có

\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)

*Lập pt bậc 2 ẩn y

Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)

                            \(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                             \(=3+\frac{3}{2}\)

                             \(=\frac{9}{2}\)

  \(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)

                    \(=x_1x_2+1+1+\frac{1}{x_1x_2}\)

                    \(=2+2+\frac{1}{2}\)

                    \(=\frac{9}{2}\)

Vậy pt cần lập có dạng \(y^2-Sy+P=0\)

                            \(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)

                           \(\Leftrightarrow2y^2-9y+9=0\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:

Áp dụng định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của pt $x^2-5x-1=0$ thì:

\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=-1\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} y_1+y_2=x_1^4+x_2^4=(x_1^2+x_2^2)^2-2(x_1x_2)^2=[(x_1+x_2)^2-2x_1x_2]^2-2(x_1x_2)^2=727\\ y_1y_2=(x_1x_2)^4=1\end{matrix}\right.\)

Theo định lý Vi-et đảo, $y_1,y_2$ là nghiệm của PT:
$y^2-727y+1=0$

NV
5 tháng 5 2020

\(\Delta=25-4\left(m+4\right)=9-4m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)

a/ \(\Delta>0\Rightarrow m< \frac{9}{4}\)

\(x_1^2+x_2^2=23\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)

\(\Leftrightarrow25-2\left(m+4\right)=23\Rightarrow m+4=1\Rightarrow x=-3\) (t/m)

b/ \(\Delta\ge0\Rightarrow m\le\frac{9}{4}\)

Để pt có nghiệm khác 0 thì \(m\ne-4\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-3\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-3\)

\(\Leftrightarrow\frac{25-2\left(m+4\right)}{m+4}=-3\)

\(\Leftrightarrow-m-4=25\Rightarrow m=-29\) (t/m)

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

NV
13 tháng 5 2020

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_2+\frac{1}{x_1}\right)\left(x_1+\frac{1}{x_2}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=3+\frac{3}{2}=\frac{9}{2}\\y_1y_2=2+\frac{1}{2}+2=\frac{9}{2}\end{matrix}\right.\)

Theo Viet đảo, \(y_1;y_2\) là nghiệm:

\(y^2-\frac{9}{2}y+\frac{9}{2}=0\Leftrightarrow2y^2-9y+9=0\)

NV
22 tháng 4 2019

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-7\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=3^2+2.7=23\)

\(B^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2+4.7=37\Rightarrow B=\sqrt{37}\)

\(C=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{3-2}{-7-3+1}=-\frac{1}{9}\)

\(D=10x_1x_2+3\left(x^2_1+x^2_2\right)=4x_1x_2+3\left(x_1+x_2\right)^2=-28+27=-1\)

\(E=\left(x_1+x_2\right)\left(x_1^2+x_2^2-3x_1x_2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=90\)

\(F=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2=431\)