K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

Áp dụng định lý Pi-ta-go đảo vào tam giác ABC  có :
AB2+AC2=82+152

                =64+225

                =289

                =172

                =BC2

=> AB2+AC2=BC2

=> Tam giác ABC vuông tại A

       Vậy tam giác ABC vuông tại A

8 tháng 1 2019

8 cm 15 cm 17 cm

    Ta có :

                           \(BC^2=AB^2+AC^2\)

                     \(\Leftrightarrow17^2=8^2+15^2\)  

                     \(\Leftrightarrow289=64+225\)

                     \(\Leftrightarrow289=289\)

                     \(\Rightarrow\Delta ABC\)là \(\Delta\) vuông.

             (Vì theo định lí Py-ta-go:\(BC^2=AB^2+AC^2\))

Sửa đề: I là giao của BH và CK

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KB=HC

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

=>ΔAIB=ΔAIC

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

AH=AK

=>ΔAHI=ΔAKI

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

=>ΔABM=ΔACM

b: góc MAB=90-50=40 độ<góc ABM

=>MB<MA

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC
=>ΔABI=ΔACI

=>IB=IC

=>I nằm trên trung trực của BC

mà AM là trung trực của BC

nên A,M,I thẳng hàng

16 tháng 1 2022

tham khảo

a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)

16 tháng 1 2022

\(\text{Hình bạn tự vẽ nhoa!}\)

\(\text{a)}\Delta ABC\text{ cân tại }A:\)

\(\Rightarrow\widehat{B}=\widehat{C}\)

\(\text{Vì }AD=AE\)

\(\Rightarrow\Delta AED\text{ cân tại A}:\)

\(\Rightarrow\widehat{E}=\widehat{D}\)

\(\text{Ta có:}\widehat{B}+\widehat{C}+\widehat{BAC}=\widehat{E}+\widehat{D}+\widehat{EAD}=180^0\)

\(\text{mà }\widehat{EAD}\text{ và }\widehat{BAC}\text{(đối đỉnh)}\)

\(\Rightarrow\widehat{E}+\widehat{D}=\widehat{B}+\widehat{C}\)

\(\Rightarrow\widehat{E}=\widehat{C}\)

\(\text{mà chúng so le trong}\)

\(\Rightarrow ED=BC\)

\(\text{b)Xét }\Delta EAB\text{ và }\Delta DAC\text{ có:}\)

\(AE=AD\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

\(\widehat{EAB}=\widehat{CAD}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta EAB=\Delta DAC\left(c.g.c\right)\)

\(BE=CD\text{(2 cạnh tương ứng)}\)

\(\text{c)Ta có:}\Delta EAB=\Delta DAC\left(cmt\right)\)

\(\Rightarrow\widehat{AEB}=\widehat{ADC}\)

\(\text{mà }\widehat{AED}=\widehat{ADE}\)

\(\Rightarrow\widehat{AEB}+\widehat{AED}=\widehat{ADC}+\widehat{ADE}\)

\(\text{Xét }\Delta BED\text{ và }\Delta CDE\text{ có:}\)

\(BE=CD\left(cmt\right)\)

\(\widehat{BED}=\widehat{CDE}\left(cmt\right)\)

\(ED\text{ chung}\)

\(\Rightarrow\Delta BED=\Delta CDE\left(c.g.c\right)\)

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: \(\widehat{D}=\widehat{E}\) và AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

c: Xét ΔADE có AH/AD=AK/AE

DO đó: HK//DE
hay BC//HK

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AHchung

Do đo: ΔAHB=ΔAHC

b: HB=HC=BC/2=3cm

=>AH=4cm

c: Xét ΔABM và ΔACN có

góc ABM=góc ACN

AB=AC
góc BAM chung

Do đó: ΔABM=ΔACN

Suy ra BM=CN

Xét ΔNBC và ΔMCB có

NB=MC

NC=MB

BC chung

Do đo: ΔNBC=ΔMCB

Suy ra: góc KBC=góc KCB

=>ΔKBC cân tại K

=>KB=KC

=>KN=KM

hay ΔKNM cân tại K

d: Xét ΔABC có AN/AB=AM/AC

nên NM//BC

24 tháng 4 2020

Ta thấy BC là cạnh lớn nhất

Ta có: \(AB^2+AC^2=6^2+8^2=100.\)

\(BC^2=10^2=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

Xét tam giác ABC có \(BC^2=AB^2+AC^2\)

=> TAM GIÁC ABC vuông tại A( Py-ta-go đảo)

20 tháng 8 2020

Bài Làm

a) Xét tam giác AMN và tam giác BNM có:

       \(\widehat{A}=\widehat{B}\)(=90o)

       MN chung

      \(\widehat{M}=\widehat{N}\)(vì tam giác AMN cân tại E)

=> tam giác AMN=tam giác BNM( ch-gn)

b) Ta có \(MA\perp EN\)

             \(NB\perp EM\)

Mà MA cắt NB tại I => I là trực tâm của tam giác EMN

=> \(EH\perp MN\)

Vậy EH là đường trung tuyến của tam giác EMN

c) Ta có EA+AN=EN

      hay    2 +  3 = EN

                2  + 3 = 5 (cm)

VÌ tam giác EMN cân tại E nên : EM=EN=5 cm

Xét tam giác EMA có:

ME= MA2 + EA2

52   = MA2  + 22

MA2 = 52 -22

MA= 25-4

MA2 = 21

\(MA=\sqrt{21}\)

( MÌNH CHỈ BIẾT LÀM ĐẾN ĐÂY THÔI,MONG BẠN THÔNG CẢM MK HƠI KO ĐC THÔNG MINH! HÌNH BẠN TỰ VẼ NHÉ)

CHÚC BẠN HỌC TỐT!!!!!!!!^_^