K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

21 tháng 3 2015

câu c hình như bn nhầm đỉnh tứ giác thì phải

d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé

17 tháng 5 2016

kho qua

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

27 tháng 3 2020

sai bét tè lè nhé lún

30 tháng 5 2018

A B M O C D K H I

1) Xét tứ giác OKAC: ^OKC=900; ^OAC=900 (Do MA là tiếp tuyến của (O))

=> Tứ giác OKAC là tứ giác nội tiếp đường tròn. (Tâm là trung điểm OC) 

Xét tứ giác OKDB: ^OKD=^OBD=900 => Tứ giác OKDB nội tiếp đường tròn. (Tâm là trung điểm OD)

2) Ta có: Tứ giác OKAC nội tiếp đường tròn => ^OCK=^OAK.

Lại có: \(\Delta\)AOB cân tại O => ^OAB=^OBA hay ^OAK=^OBK

=> ^OCK=^OBK. Mà tứ giác OBDK nội tiếp đường tròn => ^OBK=^ODK

Nên ^OCK=^ODK => \(\Delta\)COD cân tại O => OC=OD (đpcm).

3) Nối D với H.

Xét \(\Delta\)COD cân tại O có OK là đường cao => OK đồng thời là đường trung tuyến => CK=DK.

Xét \(\Delta\)CAK và \(\Delta\)DHK: AK=HK; ^CKA=^DKH (Đối đỉnh); CK=DK

=> \(\Delta\)CAK = \(\Delta\)DHK (c.g.c) => ^ACK = ^HDK (2 góc tương ứng)

Mà 2 góc trên ở vị trí so le trg nên AC // HD hay AM // HD.

Xét \(\Delta\)AMB: MA=MB (T/c 2 tiếp tuyến cắt nhau) => \(\Delta\)AMB cân tại M.

Lại có: MO hay MH là phân giác ^AMB => MH là đường trung tuyến => H là trung điểm AB.

Ta thấy: \(\Delta\)AMB có H là trung điểm AB; HD // AM ; D thuộc BM => D là trung điểm BM

Mà I là trung điểm AM => ID là đường trung bình của \(\Delta\)MAB => ID // AB 

Dễ thấy MO vuông góc AB tại H => ID vuông góc với MO (Quan hệ //, vg góc) (đpcm).