K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Bài 1:

Nếu $a+b+c=0$ thì đkđb thỏa mãn

$M=\frac{(-c)(-a)(-b)}{abc}=\frac{-(abc)}{abc}=-1$

Nếu $a+b+c\neq 0$. Áp dụng TCDTSBN:

$\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{c+b+a}=\frac{a+b+c}{a+b+c}=1$

$\Rightarrow a+b-c=c; a+c-b=b; b+c-a=a$

$\Leftrightarrow a+b=2c; a+c=2b; b+c=2a$

$\Rightarrow a=b=c$

$M=\frac{(a+a)(a+a)(a+a)}{aaa}=\frac{8a^3}{a^3}=8$

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Bài 2a

Đặt $2x=3y=4z=t$

$\Rightarrow x=\frac{t}{2}; y=\frac{t}{3}; z=\frac{t}{4}$

Khi đó:

$|x+y+3z|=1$

$\Leftrightarrow |\frac{t}{2}+\frac{t}{3}+\frac{3t}{4}|=1$

$\Leftrightarrow |\frac{19}{12}t|=1$

$\Rightarrow t=\pm \frac{12}{19}$

Nếu $t=\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{6}{19}; y=\frac{4}{19}; z=\frac{3}{19}$

Nếu $t=-\frac{12}{19}$ thì:

$x=\frac{t}{2}=\frac{-6}{19}; y=\frac{-4}{19}; z=\frac{-3}{19}$

8 tháng 8 2021

\(1.\)  \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)

       \(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=14\)

vậy P=14

\(2.\)   \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)

          \(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)

         \(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)

         \(\Rightarrow|x+2|=4\)

         \(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)

          \(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

vậy  \(x\in\left\{2;-6\right\}\)

NM
8 tháng 8 2021

bài 1

ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)

2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)

\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)

\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)

27 tháng 11 2016

sách gì thế bn

27 tháng 11 2016

30 người → 8 giờ

40 người→ ? giờ

lời giải thì bn tự đặt nha! Bây giờ bn lấy 30 nhân cho 8 rồi chia cho 40 nha bn. Chúc bn thành cônghihi

NM
8 tháng 8 2021

a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)

\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)

2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)

Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)

3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)

4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)

Vậy \(x=3,y=-3,z=2\)

30 tháng 8 2021

1/ 

Xét tg AOC và tg BOD có

OA=OB; OC=OD

\(\widehat{AOC}=\widehat{BOD}\) (góc đối đỉnh)

\(\Rightarrow\Delta AOC=\Delta BOD\left(c.g.c\right)\)

Ta có OA=OB; OC=OD => ACBD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thig tứ giác đó là hbh) => AC//BD (trong hình bình hành các cặp cạnh đối // với nhau từng đôi một)

2/ Xét tg ACD và tg BDC có

DC chung

AC=BD; AD=BC (trong hbh các cặp cạnh đối bằng nhau từng đôi một)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\)

3/

Xet tg DAE và tg CBF có

AD=BC (cạnh đối hbh ACBD)

AE=BF (giả thiết)

\(\widehat{DAE}=\widehat{CBF}\) (Hai góc đối của hình bình hành ACBF)

\(\Rightarrow\Delta DAE=\Delta CBF\left(c.g.c\right)\)

4/

Ta có 

CE//DF (cạnh đối của hbh ACBF)

CE=AC-AE; DF=BD-BF

mà AC=BD; AE=BF

=> CE=DF

=> ECFD là hình bình hành (tứ giác có cặp cạnh đối // và bằng nhau là hbh)

=> DE//CF (trong hbh các cặp cạnh đối // với nhau từng đôi một)

Trong hbh ECFD có EF và CD là hai đường chéo

=> EF và CD cắt nhau tại trung điểm mỗi đường (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà O là trung điểm CD => O là trung điểm của EF => E; O; F thẳng hàng