K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Ta có: x3 + y3 = x+ 3x2y + 3xy+ y3 - 3x2y -3xy2 = ( x+ 3x2y + 3xy+ y) -(3x2y +3xy2 ) = (x+y)-3xy(x+y) 

Thay x +y = 1 và xy = -1 

x3 + y3 = 13 + (-3).(-1).1 =4 

20 tháng 6 2017

     x+y=1

=> x và y=1 và -1

     x*3+-1*3=0

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

24 tháng 7 2018

\(15\left(2a^2-1\right)+5\left(3-\frac{1}{5a}-6a^2\right)\)

\(=30a^2-15+15-\frac{1}{a}-30a^2\)

\(=-\frac{1}{a}\)

tại \(a=2017\)=> M= \(\frac{-1}{a}=\frac{-1}{2017}\)

\(\left(x-y\right)\left(x^2+xy+y^2\right)+y^3\)

\(=x^3-y^3+y^3\)

\(=x^3\)

ại \(x=2\)=> N= \(x^3=2^3=8\)

a: \(x^3+y^3+xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)

\(=1-3xy+xy=-2xy+1\)

b: \(x^3-y^3-xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\)

\(=1+3xy-xy=2xy+1\)

Bài 3: 

Gọi bốn số nguyên dương liên tiếp là x,x+1,x+2,x+3

Theo đề, ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=120\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=120\)

\(\Leftrightarrow\left(x^2+3x\right)^2+2\left(x^2+3x\right)-120=0\)

\(\Leftrightarrow\left(x^2+3x\right)^2+12\left(x^2+3x\right)-10\left(x^2+3x\right)-120=0\)

\(\Leftrightarrow\left(x^2+3x+12\right)\left(x^2+3x-10\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

mà x là số nguyên dương

nên x=2

Vậy: Bốn số cần tìm là 2;3;4;5

4 tháng 8 2017

\(\left(x^2+y^2\right)=18\Leftrightarrow\left(x^2+y^2\right)^2=324\Leftrightarrow x^4+2x^2y^2+y^4=324\)

\(\Leftrightarrow x^4+y^4+50=324\Leftrightarrow x^4+y^4=274\)

1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)