Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x)=0=> (x+1)(x-1)=0
=>__x+1=0=>x=-1
|__x-1=0=> x=1
vậy nghiêm của f(x) là ±1
xét f(x)=0 => (x+1)(x-1)=0
=> __x+1=0=> x=-1
|__x-1=0=> x=1
vậy nghiệm của f(x) là ±1
ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)
g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)
g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)
=>1+a-b=3+a+b
=>1-3-b-b=-a+a
=> -2-2b=0
=> -2b=2
=>b=2:(-2)=-1
thay b vào ta có:
\(g\left(1\right)=3+a+\left(-1\right)=0\)
=> 2+a=0
=> a=-2
Vậy a=-2 và b=-1
Ta có: f(x)=(x+1).(x-1)=0
=> x+1=0=>x= -1 (chuyển vế đổi dấu)
x-1=0=>x=1
g(x)=x^3+ax^2+bc+2
g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0
<=> -1+a+b+2=0
=>a= -1-b
g(1)= 1^3+a.1^2+b.1+2=0
<=>1+a+b+2=0
=>3+a+b=0
=>b=-3
a=0
Vậy a=0 ; b= -3
Ta có: f(x) = (x-1)(x+2) = 0
\(\Rightarrow\) x-1 = 0 hoặc x+2 = 0
\(\Rightarrow\) x = 1 hoặc x = -2
Vậy x = 1 hoặc x = -2 là nghiệm của đa thức f(x)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên g(1) = 0 hay g(-2) = 0
Ta có: g(1) = 1^3 + a.1^2 + b.1 + 2 = 0
\(\Rightarrow\) 1 + a + b + 2 = 0
\(\Rightarrow\) a + b = -3
\(\Rightarrow\) b = (-3) - a (1)
Lại có: g(-2) = (-2)^3 + a.(-2)^2 + b.(-2) + 2 = 0
\(\Rightarrow\) (-8) + 4a - 2b + 2 = 0
\(\Rightarrow\) 4a - 2b = 6 (2)
Từ (1) và (2) ta suy ra: 4a - 2b = 4a - 2.(-3 - a) = 4a + 6 +2a = 6
\(\Rightarrow\) 6a + 6 = 6
\(\Rightarrow\) 6a = 0
\(\Rightarrow\) a = 0
Thay vào (1) ta có: b = -3 - 0 = -3
Vậy a = 0; b = -3
Do f(x) có nghiệm là 1 nên f(1) = 0
\(\Rightarrow a.1^2-b.1+1=0\)
\(a-b+1=0\)
\(a=b-1\) (1)
Do f(x) có nghiệm là \(-\dfrac{1}{2}\) nên \(f\left(-\dfrac{1}{2}\right)=0\)
\(\Rightarrow a.\left(-\dfrac{1}{2}\right)^2-b.\left(-\dfrac{1}{2}\right)+1=0\)
\(\dfrac{1}{4}a+\dfrac{1}{2}b+1=0\)
\(\Rightarrow4\left(\dfrac{1}{4}a+\dfrac{1}{2}b+1\right)=0\)
\(\Rightarrow a+2b+4=0\) (2)
Thay (1) vào (2) ta có:
\(b-1+2b+4=0\)
\(3b+3=0\)
\(3b=-3\)
\(b=-\dfrac{3}{3}=-1\)
\(\Rightarrow a=-1-1=-2\)
Vậy \(a=-2;b=-1\)
f(1)=a+b+1=0 =>a+b = -1 (1)
f(1/2)=1/4a+1/2b+1=0 =>1/2(1/2a+b+2)=0
=>1/2a+b+2=0 => 1/2a+b= -2 (2)
Từ (1) và (2) =>a+b-1/2a-b=-3
=> 1/2a=-3 => 2=-6
Do đó b=-5
Vậy...