K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

f(1)=a+b+1=0 =>a+b = -1 (1)

f(1/2)=1/4a+1/2b+1=0 =>1/2(1/2a+b+2)=0

                               =>1/2a+b+2=0 => 1/2a+b= -2 (2)

Từ (1) và (2) =>a+b-1/2a-b=-3   

                      => 1/2a=-3 => 2=-6

Do đó b=-5

Vậy...

12 tháng 5 2016

xét f(x)=0=> (x+1)(x-1)=0

   =>__x+1=0=>x=-1

      |__x-1=0=> x=1

vậy nghiêm của f(x) là ±1

12 tháng 5 2016

xét f(x)=0 => (x+1)(x-1)=0

=> __x+1=0=> x=-1

    |__x-1=0=> x=1

vậy nghiệm của f(x) là ±1

ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)

g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)

g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)

=>1+a-b=3+a+b

=>1-3-b-b=-a+a

=> -2-2b=0

=> -2b=2

=>b=2:(-2)=-1

thay b vào ta có:

\(g\left(1\right)=3+a+\left(-1\right)=0\)

=> 2+a=0

=> a=-2

Vậy a=-2 và b=-1

6 tháng 5 2018

ahihi

15 tháng 5 2018

Ta có: f(x)=(x+1).(x-1)=0

=> x+1=0=>x= -1   (chuyển vế đổi dấu)

x-1=0=>x=1

g(x)=x^3+ax^2+bc+2

g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0

<=> -1+a+b+2=0

=>a= -1-b

g(1)= 1^3+a.1^2+b.1+2=0

<=>1+a+b+2=0

=>3+a+b=0

=>b=-3

a=0 

Vậy a=0 ; b= -3

2 tháng 5 2016

Ta có: f(x) = (x-1)(x+2) = 0

\(\Rightarrow\) x-1 = 0 hoặc x+2 = 0

\(\Rightarrow\) x = 1 hoặc x = -2

Vậy x = 1 hoặc x = -2 là nghiệm của đa thức f(x) 

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên g(1) = 0 hay g(-2) = 0

Ta có: g(1) = 1^3 + a.1^2 + b.1 + 2 = 0

\(\Rightarrow\) 1 + a + b + 2 = 0

\(\Rightarrow\) a + b = -3

\(\Rightarrow\) b = (-3) - a   (1)

Lại có: g(-2) = (-2)^3 + a.(-2)^2 + b.(-2) + 2 = 0

\(\Rightarrow\) (-8) + 4a - 2b + 2 = 0

\(\Rightarrow\) 4a - 2b = 6    (2)

Từ (1) và (2) ta suy ra: 4a - 2b = 4a - 2.(-3 - a) = 4a + 6 +2a = 6

                              \(\Rightarrow\) 6a + 6 = 6

                              \(\Rightarrow\) 6a = 0

                              \(\Rightarrow\) a = 0

Thay vào (1) ta có: b = -3 - 0 = -3

Vậy a = 0; b = -3

21 tháng 4 2022

Do f(x) có nghiệm là 1 nên f(1) = 0

\(\Rightarrow a.1^2-b.1+1=0\)

\(a-b+1=0\)

\(a=b-1\)   (1)

Do f(x) có nghiệm là \(-\dfrac{1}{2}\) nên \(f\left(-\dfrac{1}{2}\right)=0\)

\(\Rightarrow a.\left(-\dfrac{1}{2}\right)^2-b.\left(-\dfrac{1}{2}\right)+1=0\)

\(\dfrac{1}{4}a+\dfrac{1}{2}b+1=0\)

\(\Rightarrow4\left(\dfrac{1}{4}a+\dfrac{1}{2}b+1\right)=0\)

\(\Rightarrow a+2b+4=0\)    (2)

Thay (1) vào (2) ta có:

\(b-1+2b+4=0\)

\(3b+3=0\)

\(3b=-3\)

\(b=-\dfrac{3}{3}=-1\)

\(\Rightarrow a=-1-1=-2\)

Vậy \(a=-2;b=-1\)

21 tháng 4 2022

Cảm ơnn nhiều nhé