Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
GIẢI:
a) Chứng minh tam giác CKH đồng dạng tam giác BCA
AKC^ + ABC^ = 2v => AKCH nội tiếp
=> CHK^ = CAB^ (1) ( cùng chắn cung CK)
CKH^ = CAH^ (2) ( cùng chắn cung CH)
CAH^ = ABC^ (3) ( so le trong)
(2) và (3) => CKH^ = ACB^ (4)
(1) và (4) => ΔCKH ~ ΔBCA (g.g)
b) Chứng minh HK=AC.sinBAD
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị)
=> HK = AC.sin(BAD^)
c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm
AB = CD = 4
CDH^ = BAD^ = 60*
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4)
DH = CD/2 = 4/2 = 2
=> AH = AD + DH = 5 + 2 = 7
AD = BC = 5
CBK^ = BAD^ = 60*
=> CK = 5.√3/2
BK = BC/2 = 5/2
=> AK = AB + BK = 4 + 5/2 = 13/2
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8
chúc bạn học tốt
a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
AH^2=BH.HCAH2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{HB}=2,25cm⇔HC=HBAH2=2,25cm.
BC=BH+HC=4+2,25=6,25cmBC=BH+HC=4+2,25=6,25cm.
AM=\dfrac{BC}{2}=3,125cmAM=2BC=3,125cm.
b) Áp dụng định lý Pi-ta-go ta có:
AB=\sqrt{AH^2+BH^2}=5cmAB=AH2+BH2=5cm.
AC=\sqrt{BC^2-AB^2}=\sqrt{6,25^2-5^2}=3,75cmAC=BC2−AB2=6,252−52=3,75cm.
Theo tính chất tia phân giác của một góc:\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{3,75}=\dfrac{4}{3}DCBD=ACAB=3,755=34.
Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.
Từ đó ta có \dfrac{DE}{AB}=\dfrac{DC}{BC}=\dfrac{3}{7}\Rightarrow DE=\dfrac{3}{7}.5=\dfrac{15}{7}\left(cm\right)ABDE=BCDC=73⇒DE=73.5=715(cm)
\Rightarrow AD=\dfrac{15\sqrt{2}}{7}\left(cm\right)⇒AD=7152(cm).
Câu 1:
Sửa đề: AC=3cm
Xét ΔABC vuông tại A có \(cosC=\dfrac{CA}{CB}\)
=>\(CB=\dfrac{CA}{cosC}=\dfrac{3}{cos60}=6\)(cm)
ΔABC vuông tại A có AD là đường trung tuyến
nên \(AD=\dfrac{CB}{2}=3\left(cm\right)\)
Câu 3:
ABCD là hình bình hành
=>\(\widehat{B}+\widehat{C}=180^0\)
mà \(\widehat{B}=\widehat{C}\)
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0}{2}=90^0\)
Hình bình hành ABCD có \(\widehat{B}=90^0\)
nên ABCD là hình chữ nhật
=>\(S_{ABCD}=AB\cdot BC=5\cdot4=20\left(cm^2\right)\)