Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\text{A = 1.2.3 + 3.4.5+...99.100.101}\)
\(\text{A=1.3(5-3)+3.5(7-3)+}...+99.101\left(103-3\right)\)
\(=\left(1.3.5+3.5.7+5.7.9+...99.101.103\right)-\left(1.3.3+3.5.3+99.101.3\right)\)
\(=\left(15+99.101.103.105\right):8-3.\left(1.3+3.5+5.7+...+99.101\right)\)
\(=13517400-3.171650\)
\(=13002450\)
D=1.2.3+3.4.5+...+99.100.101
D=1.2.3.4+5.6.7.4+........+99.100.101.4
D=1.2.3.4+5.6.7.(8-4)+........+99.100.101.(102-98)
D=(1.2.3.4+5.6.7.8+.........+99.100.101.102)-(1.2.3.4+5.6.7.8+....+98.99.100.101)
D=98.99.100.101
\(A=1.2.3+3.4.5+5.6.7+...+99.100.+101\)
\(A=1.3\left(5-3\right)+3.5\left(7-3\right)+5.7\left(9-3\right)+...+99.100\left(103-3\right)\)
\(=\left(1.3.5+3.5.7+5.7.9+99.101.103\right)-\left(1.3.3+3.5.3+99.101.3\right)\)
\(=\left(15+99.101.103.105\right):8-3.\left(1.3+3.5+5.7+99.101\right)\)
\(=13517400-3.171650\)
\(=13002450\)
Rút gọn mỗi số hãng của số ta được :
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
Vậy C = 100/101
\(C=\frac{4}{1.2.3}+\frac{8}{3.4.5}+\frac{12}{5.6.7}+...+\frac{200}{99.100.101}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Đặt S = 1,2 + 2,3 + 3,4 + ... + 99.100
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
3S = 1.2.3 + 2.3 ( 4 - 1 ) + 3.4 ( 5 - 2 ) + ... + 98.99 ( 100 - 97 ) + 99.100 ( 101 - 98 )
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... - 97.98.99 + 99.100.101 - 98.99.100
S = 33.100.101 = 333300
Vậy S bằng 333300
Đáp số : S : 333300
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)
Đặt A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 99.100.101.(102-98)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> 4A = 101989800
=> A = 25497450