Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{10}< \sqrt{16}=4\)
b/ \(\sqrt{40}>\sqrt{36}=4\)
c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)
d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)
a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)
2^40+3^40<2^40.3^40 (1)
mà 2^40.3^40=6^40 (2)
từ (1)vs(2) có 2^40+3^40<6^40
ta có: \(\left(\frac{16}{25}\right)^{10}=\left[\left(\frac{4}{5}\right)^2\right]^{10}=\left(\frac{4}{5}\right)^{20}\)
\(\left(\frac{3}{7}\right)^{40}=\left[\left(\frac{3}{7}\right)^2\right]^{20}=\left(\frac{9}{49}\right)^{20}\)
mà \(\frac{4}{5}>\frac{9}{49}\)
\(\Rightarrow\left(\frac{4}{5}\right)^{20}>\left(\frac{9}{49}\right)^{20}\)
\(\Rightarrow\left(\frac{16}{25}\right)^{10}>\left(\frac{3}{7}\right)^{40}\)
Ta có: \(\left(\frac{-1}{4}\right)^{40}=\left[\left(\frac{-1}{4}\right)^2\right]^{20}=\left(\frac{1}{16}\right)^{20}\)
\(\left(\frac{-1}{5}\right)^{34}=\left[\left(\frac{-1}{5}\right)^2\right]^{17}=\left(\frac{1}{25}\right)^{17}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{20}>\left(\frac{1}{25}\right)^{17}\)
Vậy \(\left(\frac{-1}{4}\right)^{40}>\left(\frac{-1}{5}\right)^{34}\)
ta có : \(1+\frac{-33}{19}=\frac{-14}{19}\)
\(1+\frac{-45}{31}=\frac{-14}{31}\)
Vì 19 < 31 Nên \(\frac{-14}{19}>\frac{-14}{31}\)
Vậy : \(\frac{-33}{19}< \frac{-45}{31}\)
Bài 1 :
a) \(-\frac{33}{19}\) và \(\frac{-45}{31}\)
ta có : \(-\frac{31}{19}\) +1=\(\frac{-14}{19}\)
\(\frac{-41}{31}\)+1=\(\frac{-14}{31}\)
vì 19<31 =>\(\frac{-14}{19}\) > \(\frac{-14}{31}\)
Vậy \(\frac{-31}{19}\) > \(\frac{-41}{31}\)
Ta có :
1) 45^10 . 5^30= (5.9)^10 . 5^30 = 5^10 . 5^30 . 9^10 = 5^40 . 3^20 = 25^20 . 3^20=75^20
2)\(\sqrt{40+2}=\sqrt{42}<\sqrt{49}=7=6+1=\sqrt{36}+\sqrt{1}<\sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}<\sqrt{40}+\sqrt{2}\)
3)\(Cho\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k;y=4k\)
Ta lại có:
\(xy=12\Rightarrow3k.4k=12\)
\(12.k^2=12\Rightarrow k^2=1\Rightarrow k=1:-1\)
\(Vơik=1\Rightarrow x=1.3=3;y=1.4=4\)
\(k=-1\Rightarrow x=-1.3=-3;y=-1.4=-4\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)