Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
3x(x - 10) = x - 10
(x - 10)(3x - 1) = 0
Th1:
x - 10 = 0
x = 10
TH2:
3x - 1 = 0
3x = 1
x = 1/3
Vậy x = 10 hoặc x = 1/3
x(x + 7) - (4x + 28) = 0
x(x + 7) - 4(x + 7) = 0
(x + 7)(x - 4) = 0
Th1:
x + 7 = 0
x = - 7
Th2:
x - 4 = 0
x = 4
Vậy x = - 7 hoặc x = 4
x(x - 4) = 2x - 8
x(x - 4) - 2(x - 4) = 0
(x - 2)(x - 4) = 0
Th1:
x - 2 = 0
x = 2
Th2:
x - 4 = 0
x = 4
Vậy x = 2 hoặc x = 4
(2x + 3)(x - 1) + (2x - 3)(x - 1) = 0
(x - 1)(2x + 3 + 2x - 3) = 0
4x(x - 1) = 0
Th1:
x = 0
Th2:
x - 1 = 0
x = 1
Vậy x = 0 hoặc x = 1
a)
\(3x\left(x-10\right)=x-10\)
\(\Rightarrow3x\left(x-10\right)-\left(x-10\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(x-10\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-1=0\\x-10=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=10\end{array}\right.\)
b)
\(x\left(x+7\right)-\left(4x+28\right)=0\)
\(\Rightarrow x\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=-7\end{array}\right.\)
c)
\(x\left(x-4\right)=2x-8\)
\(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=2\end{array}\right.\)
d)
\(\left(2x+3\right)\left(x-1\right)+\left(2x+3\right)\left(x-1\right)=0\)
\(\Rightarrow2\left(2x+3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+3=0\\x-1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=1\end{array}\right.\)
2) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\)\(x^3-3x^2-3x^2+9x+2x-6=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)
bn giải tiếp nha
3) \(x^3-4x^2+x+6=0\)
\(\Leftrightarrow\)\(x^3-3x^2-x^2+3x-2x+6=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)
lm tiếp nha
4) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\( \left(x+1\right)\left(x-2\right)^2=0\)
lm tiếp nha
Mk làm mẫu 1 bài cho nha !
1. <=> (x^3-x^2)+(5x^2-5x)+(6x-6) = 0
<=> (x-1).(x^2+5x+6) = 0
<=> (x-1).[(x^2+2x)+(3x+6)] = 0
<=> (x-1).(x+2).(x+3) = 0
<=> x-1=0 hoặc x+2=0 hoặc x+3=0
<=> x=1 hoặc x=-2 hoặc x=-3
Vậy ..............
Tk mk nha