Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
e, 3x(2-x) =15(x-2)
\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy..
f, (x+5)(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Vậy..
g, x(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
,h, (2x -4)(x-2)=0
\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
i, (x+1/5)(2x-3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)
k, x²-4x=0
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
m, 4x²-1=0
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
n, x²-6x+9=0
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)
<=> x=3
l, (3x-5)²-(x+4)²=0
\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)
\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy ..
o, 7x(x+2)-5(x+2)=0
\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)
Vậy....
p, 3x(2x-5)-4x+10=0
\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)
\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...
q, (2-2x)-x²+1=0
\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)
\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy ....
r, x(1-3x)=5(1-3x)
\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)
s, 2x-3/4+x+1/6=3
\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)
A. \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow4x-14x+27x=30-8-7+36\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\) . Vậy \(S=\left\{3\right\}\)
B. \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=16-15-16+11\)
\(\Leftrightarrow10x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{5}\) . Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
Câu C) bạn xem lại đề nha mik tính ko đc
D. \(\left(5x-3\right)4x-2x\left(10x-3\right)=15\)
\(\Leftrightarrow20x^2-12x-20x^2+6x=15\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\) . Vậy \(S=\left\{-\dfrac{5}{2}\right\}\)
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
Sorry mình nhầm câu a
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
Giải:
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5(x2 - 49) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
\(\Leftrightarrow\) 2x + 255 = 0
\(\Leftrightarrow\) 2x = - 255
\(\Leftrightarrow\) x = - 255 : 2
\(\Leftrightarrow\) x = \(-\frac{255}{2}\)
Vậy x = \(-\frac{255}{2}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
\(\Leftrightarrow\) x3 + 8 - x3 - 2x = 15
\(\Leftrightarrow\) 8 - 2x = 15
\(\Leftrightarrow\) 2x = 8 - 1
\(\Leftrightarrow\) 2x = - 7
\(\Leftrightarrow\) x = - 7 : 2
\(\Leftrightarrow\) x = \(-\frac{7}{2}\)
Vậy x = \(-\frac{7}{2}\)
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 - 1 = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 - 1 = 28
\(\Leftrightarrow\) 26x + 26 = 28
\(\Leftrightarrow\) 26x = 28 - 26
\(\Leftrightarrow\) 26x = 2
\(\Leftrightarrow\) x = 2 : 26
\(\Leftrightarrow\) x = \(\frac{1}{13}\)
Vậy x = \(\frac{1}{13}\)
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - (x6 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - x6 + 1 = 0
\(\Leftrightarrow\) -2x2 + 2 = 0
\(\Leftrightarrow\) -2x2 = - 2
\(\Leftrightarrow\) x2 = - 2 : (- 2)
\(\Leftrightarrow\) x2 = 1
\(\Leftrightarrow\) x = 1 hoặc x = - 1
Vậy x \(\in\) {1; - 1}
a)4(x+2)-7(2x-1)+9(3x-4)=30 b)2(5x-8)-3(4x-5)=4(3x-4)+11
<=>4x+8-14x+7+27x-36=30 <=>10x-16-12x+15=12x-16+11
<=>17x-21=30 <=> -14x=-4 <=>x=2/7
<=>17x=51
<=>x=3
3x(x - 10) = x - 10
(x - 10)(3x - 1) = 0
Th1:
x - 10 = 0
x = 10
TH2:
3x - 1 = 0
3x = 1
x = 1/3
Vậy x = 10 hoặc x = 1/3
x(x + 7) - (4x + 28) = 0
x(x + 7) - 4(x + 7) = 0
(x + 7)(x - 4) = 0
Th1:
x + 7 = 0
x = - 7
Th2:
x - 4 = 0
x = 4
Vậy x = - 7 hoặc x = 4
x(x - 4) = 2x - 8
x(x - 4) - 2(x - 4) = 0
(x - 2)(x - 4) = 0
Th1:
x - 2 = 0
x = 2
Th2:
x - 4 = 0
x = 4
Vậy x = 2 hoặc x = 4
(2x + 3)(x - 1) + (2x - 3)(x - 1) = 0
(x - 1)(2x + 3 + 2x - 3) = 0
4x(x - 1) = 0
Th1:
x = 0
Th2:
x - 1 = 0
x = 1
Vậy x = 0 hoặc x = 1
a)
\(3x\left(x-10\right)=x-10\)
\(\Rightarrow3x\left(x-10\right)-\left(x-10\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(x-10\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-1=0\\x-10=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=10\end{array}\right.\)
b)
\(x\left(x+7\right)-\left(4x+28\right)=0\)
\(\Rightarrow x\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=-7\end{array}\right.\)
c)
\(x\left(x-4\right)=2x-8\)
\(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=2\end{array}\right.\)
d)
\(\left(2x+3\right)\left(x-1\right)+\left(2x+3\right)\left(x-1\right)=0\)
\(\Rightarrow2\left(2x+3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+3=0\\x-1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=1\end{array}\right.\)