Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì p là số nguyên tố lớn hơn 3
suy ra p có 1 trong 2 dạng sau:
p=6k+1 p=6k+5
với p=6k+1 thì p+2=6k+1+2
=6k+3
vì 6k chia hết co 3
3chia hết cho 3
suy ra 6k+3chia hết cho 3
hay(p+2) chia hết cho 3
mà p+2>3
suy ra p+2 là hợp số(loại)
với p=6k+5 thì p+1=6k+1+5
=6k+6
vì 6k chia hết cho 6
6 chia hết cho 6
suy ra (6k+6)chia hết cho 6
hay(p+1)chia hết cho 6
vậy p+1 chia hết cho 6
NHỚ TICK CHO MK NHA BN!
Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)
-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)
TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)
Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)
a. Không vì sở dĩ số4 đã là hợp số
b. Ở đây là hai số phải ko? Có vì tổng hai số là số lẻ=> có một số chẵn và một số lẻ. Số lẻ là snt thì chắc chắn rồi còn số chẵn thì là 2. Vậy ở đây là có
a) - lx - 60l - 61 = 0
-61 - 0 = lx - 60l
-61 = lx - 60l mà lx - 60l\(\ge\)0 với mọi x .
\(\Rightarrow x\in\varnothing\)
Vậy\(x\in\varnothing\)
Trong 25 số nguyên tố đầu tiên thì có 1 số chẵn ( số 2 ) , 24 số còn lại là lẻ.
Mà tổng của 24 số lẻ là chẵn, mà cộng với chẵn thì vẫn là chẵn . Vậy tổng 25 số nguyên tố đầu tiên là số chẵn.
Bạn ơi bạn có thể giải ra cho mik đk ko Lê Quang Phúc