Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại
- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)
Nếu p>3 , p nguyên tố => p có dạng 3k+1 hoặc 3k+2 (k nguyen dương)
- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại
- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại
=> với mọi p>3 đều không thỏa mãn
Vậy p=3 là giá trị thỏa mãn cần tìm
Nếu p nguyên tố mà > 3 =>p= 3k+1 hoặc p=3k+2
nếu p=3k+1 => p+2=3k+1+2=3k+3 mà 3k+3 > 3 => p+2 là hợp số ( loại )
=> p=3k+2 . Nếu p=3k+2 => p+1=3k+1+2=3k+3 =>p+1 là hợp số
=> p+1 chia hết cho 2 ma (2;3)=1 => p+1 chia hết cho 6
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguyên tố nên từ (*)
=> 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1 hay 3k + 2 ( k \(\in\)N )
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố
Vì 3( k + 1 ) chia hết cho 3 nên dạng p = 3k + 1 không thể có
Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3
Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ
=> p + 1 là 1 số chẵn
=> p + 1 chia hết cho 2
Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1
=> p + 1 chia hết cho 6
\(p=7\Rightarrow2p+1=15\)(là hợp số)
\(p=11\Rightarrow\hept{\begin{cases}2p+1=23\\4p+1=45\left(hopso\right)\end{cases}}\)(hopso=hợp số)
Với p>11 mà p nguyên tố \(\Rightarrow p=11k+1;11k+2;....;11k+10\)
Với \(p=11k+5\)
\(\Rightarrow p=2\left(11k+5\right)+1=22k+11⋮11\)
Mà 22k+11>11=>2p+1 là hợp số
Bạn xét tiếp với \(=11k+1;..;11k+4;11k+6;...;11k+10\)vào 4p+1 để xem nó là hợp số hay nguyên tố
Kết luân: To be continue
Gọi d thuộc Ư(6n+5,4n+3)
=>6n+5 chia hết cho d ; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
vì p là số nguyên tố lớn hơn 3
suy ra p có 1 trong 2 dạng sau:
p=6k+1 p=6k+5
với p=6k+1 thì p+2=6k+1+2
=6k+3
vì 6k chia hết co 3
3chia hết cho 3
suy ra 6k+3chia hết cho 3
hay(p+2) chia hết cho 3
mà p+2>3
suy ra p+2 là hợp số(loại)
với p=6k+5 thì p+1=6k+1+5
=6k+6
vì 6k chia hết cho 6
6 chia hết cho 6
suy ra (6k+6)chia hết cho 6
hay(p+1)chia hết cho 6
vậy p+1 chia hết cho 6
NHỚ TICK CHO MK NHA BN!