K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi K là trung điểm của DC

Suy ra: AD=DK=KC

Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của CD

Do đó: MK là đường trung bình của ΔBDC

Suy ra: MK//ID

Xét ΔAMK có 

D là trung điểm của AK

DI//MK

Do đó: I là trung điểm của AM

23 tháng 7 2018

â)Gọi H là trung điểm CD

=> CH=HD=AD (gt)

Xét tam giác BDC , co :

CH =HD (cmt)

BM=MC (gt)

=> MH là đường trung bình

=> MH //BD

Xét tam giácAMH , co :

MH // BD (cmt)

AD = DH (cmt)

=> AI = IM

=> I la trung diem AM

b) Gọi H là trung điểm CD

=>CH=HD

Xet tam giac BCD , co :

CH =HD (cmt)

BM=MC (gt)

=> MH la duong trung binh

=> MH //BD va MH=\(\dfrac{BD}{2}\)

Xét tam giác AMH , cờ :MH // BD (cmt )

AI =IM (gt) (1)

=> AD =HD ( => AD=\(\dfrac{1}{2}\)DC ) (2)

Tu (1) va (2) => ID la duong trung binh

=> ID =\(\dfrac{MH}{2}\) =\(\dfrac{BD}{2}\) : 2=\(\dfrac{BD}{4}\)

23 tháng 7 2018

BI cắt AC ở D nha

25 tháng 9 2018

Hình tự vẽ.

a)C/m : CD=DE ; BM=MC;=> ME là đường trung bình của tam giác BDC.

=> BD // ME.

hay ID // ME mà AD=DE;=> ID là đường trung bình của tam giác AME.

=> I là trung điểm của AM.

b) Vì ID là đường trung bình của tam giác AME.

=> ID = 1/2 ME.(1)

Mà ME là đường trung bình của tam giác BDC.

=> ME=1/2 BD.(2)

Từ (1) và (2), suy ra:

ID=BD/4.

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:A, IP/OA=IB/OBB,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:

A, IP/OA=IB/OB

B, IP/IS=IB/ID*OD/OB

C, IP/IS=IQ/IR

3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

1

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD