Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg BMP và tg CMP có chung đường cao từ P->BC nên
\(\frac{S_{BMP}}{S_{CMP}}=\frac{BM}{CM}=1\Rightarrow S_{BMP}=S_{CMP}\)
Hai tg trên lại chung cạnh PM nên đường cao từ B->PM = đường cao từ C->PM
Xét tg BNP và tg CNP có chung cạnh PN và đường cao từ B->PM = đường cao từ C->PM nên
\(S_{BNP}=S_{CNP}\)
Theo đề bài \(AC=4xAN\Rightarrow AN+NC=4xAN\Rightarrow NC=3xAN\Rightarrow\frac{AN}{NC}=\frac{1}{3}\)
Xét tg APN và tg CNP có chung đường cao từ P->AC nên
\(\frac{S_{APN}}{S_{CNP}}=\frac{AN}{NC}=\frac{1}{3}\Rightarrow S_{CNP}=3xS_{APN}\)
Mà \(S_{BNP}=S_{CNP}\Rightarrow S_{BNP}=3xS_{APN}\)
\(\Rightarrow S_{APN}+S_{ABN}=3xS_{APN}\Rightarrow S_{ABN}=2xS_{APN}\)
Xét tg ABN và tg NBC có chung đường cao từ B->AC nên
\(\frac{S_{ABN}}{S_{NBC}}=\frac{AN}{NC}=\frac{1}{3}\Rightarrow S_{NBC}=3xS_{ABN}=3x2xS_{APN}=6xS_{APN}\)
\(S_{ABC}=S_{ABN}+S_{NBC}=2xS_{APN}+6xS_{APN}=8xS_{APN}=8x100=800cm^2\)
b/
Xét tg BMN và tg NBC có chung đường cao từ N->BC nên
\(\frac{S_{BMN}}{S_{NBC}}=\frac{BM}{BC}=\frac{1}{2}\Rightarrow S_{BMN}=\frac{S_{NBC}}{2}=\frac{6xS_{APN}}{2}=3xS_{APN}\)
Xét tg BNP và tg BMN có chung đường cao từ B->PM nên
\(\frac{S_{BNP}}{S_{BMN}}=\frac{PN}{MN}=\frac{3xS_{APN}}{3xS_{APN}}=1\Rightarrow PN=MN\)
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
a: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\times BC\times AH=\dfrac{1}{2}\times60\times40=1200\left(cm^2\right)\)
b: Vì \(AM=\dfrac{1}{3}AC\)
nên \(S_{ABM}=\dfrac{1}{3}\times S_{ABC}\)
Vì N là trung điểm của AB
nên \(S_{AMN}=\dfrac{1}{2}\times S_{ABM}=\dfrac{1}{6}\times S_{ABC}\)
Vì D là trung điểm của BC
nên \(S_{ADB}=S_{ADC}=\dfrac{1}{2}\times S_{ABC}\)
Vì \(AM=\dfrac{1}{3}AC\)
nên \(CM=\dfrac{2}{3}CA\)
=>\(S_{CDM}=\dfrac{2}{3}\times S_{CDA}=\dfrac{2}{3}\times\dfrac{1}{2}\times S_{ABC}=\dfrac{1}{3}\times S_{ABC}\)
Vì N là trung điểm của AB
nên \(S_{BND}=\dfrac{1}{2}\times S_{ADB}=\dfrac{1}{4}\times S_{ABC}\)
Ta có: \(S_{AMN}+S_{MDC}+S_{NBD}+S_{MND}=S_{ABC}\)
=>\(S_{MND}=S_{ABC}\left(1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{1}{4}\times S_{ABC}\)
=>\(S_{MND}=\dfrac{1}{4}\times1200=300\left(cm^2\right)\)