Bài 3: Phân tích biểu thức thành nhân tử rồi tính giá trị biểu thức.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2022

Lời giải:

$4x^2-y^2+4x+1=(4x^2+4x+1)-y^2=(2x+1)^2-y^2$

$=(2x+1-y)(2x+1+y)=(2.10+1-5)(2.10+1+5)$

$=16.26=416$

15 tháng 8 2022

a, \(=\left(2x+1\right)^2-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)

Thay x = 10 ; y = 5 

\(\left(20+1-5\right)\left(20+1+5\right)=16.26=416\)

b, \(=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

Thay x = 93 ; y = 6 

\(\left(93-6-1\right)\left(93+6+1\right)=8600\)

25 tháng 10 2017

a) Ta có:

\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)

\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)

18 tháng 7 2016

Bài 32: 

a) P=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

       =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

        =  \(1+\sqrt{2}\)

b) Có:  \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=2y\end{cases}}}\)

Thay x=-y  ta có: Q=\(\frac{-y-y}{-y+y}\)=\(\frac{-2y}{0}\)(loại )

Thay x=2y ta có :   Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

27 tháng 4 2017

(4x + 2y + 2z - \(\sqrt{4xy}-\sqrt{4xz}+2\sqrt{yz}\) )+(y - \(6\sqrt{y}\) + 9)+(z- \(10\sqrt{z}\) + 25) = 0

<=> (\(2\sqrt{x}-\sqrt{y}-\sqrt{z}\))2 + (\(\sqrt{y}-3\))2 + (\(\sqrt{z}-5\))2 = 0 (1)

Vì VP \(\ge0\) => để (1) có n0 thì

\(\left\{{}\begin{matrix}2\sqrt{x}-\sqrt{y}-\sqrt{z}=0\left(x\right)\\\sqrt{y}-3=0\left(xx\right)\\\sqrt{z}-5=0\left(xxx\right)\end{matrix}\right.\)

Từ(xx) => \(\sqrt{y}=3\) <=> y = 9

Từ (xxx) => \(\sqrt{z}=5\) <=> z = 25

Từ (x) => \(2\sqrt{x}=8\) <=> \(\sqrt{x}=4\) <=> x = 16

=> M = (16 - 15)2 + (9 - 8)2 + (25 - 24)2 = 1 + 1 + 1 = 3

19 tháng 7 2016

bài 28

\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)

=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)

=>\(P=1\)

19 tháng 7 2016

Bài 30 phải là xy+y+x=3.

Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)

            yz+y+z=8 => (y+1)(z+1)=9(2)

           zx+x+z=15 => (x+1)(z+1)=16(3)

Nhân (1), (2) và (3) theo vế, ta có:

           [(x+1)(y+1)(z+1)]2=576

     =>  (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)

Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.

Kết quả: P=43/6 hoặc P=-79/6

11 tháng 8 2016

bn coi lại đề

15 tháng 8 2016

sao phải coi lại