Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
3x2 - 12x - |x - 2| > 12
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)
2: \(-4x^2+5x-2\)
\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)
\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)
Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)
Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)
=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)
\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)
\(=16m^2+32m+16+4\left(1-4m^2\right)\)
\(=32m+20\)
Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)
=>32m+20<0
=>32m<-20
=>\(m< -\dfrac{5}{8}\)
\(-x^2+4x-5=-\left(x-2\right)^2-1< 0;\forall x\)
Do đó BPT tương đương:
\(x^2-2\left(2m-3\right)x+4m-3>0\)
Do \(a=1>0\) nên để tập nghiệm BPT là R
\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\)
\(\Leftrightarrow4m^2-16m+12< 0\)
\(\Rightarrow1< m< 3\Rightarrow b-3a=3-3.1=0\)
Lời giải:
Đặt $x^2+4x+3=m$.
$m+1=x^2+4x+4=(x+2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow m\geq -1$
Ta có:
$(x^2+4x+3)(x^2+4x+6)=m(m+3)=(m+1)^2+m-1\geq m-1\geq -1-1=-2$
Vậy $(x^2+4x+3)(x^2+4x+6)\geq -2$ với mọi $x\in\mathbb{R}$
Để BPT đã cho đúng với mọi $x$ thì $a=-2$
\(\Leftrightarrow mx-m^2\ge x-1\Leftrightarrow\left(m-1\right)x\ge m^2-1\)
- Với \(m=1\) tập nghiệm của BPT là R (ktm)
- Với \(m>1\) \(\Rightarrow m-1>0\Rightarrow x\ge\dfrac{m^2-1}{m-1}=m+1\) hay \([m+1;+\infty)\) (ktm)
- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le m+1\) hay \((-\infty;m+1]\) có vẻ giống?
Nhẩm trắc nghiệm thì \(ax>b\) có tập nghiệm chứa dương vô cùng khi a>0, có tập nghiệm chứa âm vô cùng khi a<0
\(ax< b\) thì ngược lại
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)
TH3 x≥1
bạn không đối chiếu đk sao??