K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

cấp cứu

25 tháng 12 2016

3) tổng bằng 0

còn câu 1,2 đâng suy nghĩ

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

20 tháng 9 2017

Ta có : \(\tan A+\tan C=2\tan B\)

\(\Rightarrow\frac{\sin A}{\cos A}+\frac{\sin C}{\cos C}=2\frac{\sin B}{\cos B}\)

\(\Rightarrow\frac{\sin A\cos C+\sin C\cos A}{\cos A\cos C}=\frac{2\sin B}{\cos C}\)

\(\Rightarrow\frac{\sin\left(A+C\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)

\(\Rightarrow\frac{\sin\left(180-II\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)

\(\Rightarrow\frac{\sin\left(B\right)}{\cos A\cos C}=\frac{2\sin B}{\cos B}\)

\(\Rightarrow\cos B=2\cos A\cos C\)

\(\Rightarrow\frac{a^2+c^2-b^2}{2ac}=2\frac{b^2+c^2-a^2}{2bc}.\frac{a^2+b^2-c^2}{2ab}\)

\(\Rightarrow3c^2-2b^2=\frac{\left(2b^2-c^2\right)c^2}{b^2}\)

\(\Rightarrow2b^4-b^2c^2-c^4=0\)

\(\Rightarrow\left(b^2-c^2\right)\left(2b^2+c^2\right)=0\)

\(\Rightarrow b=c\)

Thay vào điều kiện \(a^2+b^2+c^2=ab+ac+bc\)ta thu được a = b = c , tam giác đều

25 tháng 7 2016

a2+b2+c2=ab+bc+ca 

<=> a2+b2+c2-ab-bc-ca=0

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c 

=> tam giác đó đều