Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(2^8.2.4=2^9.2^2=2^{11}\)
b) \(8^5:64=8^5:8^2=8^3\)
c) \(3^7:9=3^7:3^2=3^5\)
d) \(9^{17}.81=9^{17}.9^2=9^{19}\)
e) \(x^6.x.x^2=x^9\)
Bài 2:
a) \(2^x-15=17\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5
b) \(2.3^x=162\)
\(3^x=162:2\)
\(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy x = 4
c) \(5.x.5^2=10\)
\(\Rightarrow x.5^3=10\)
\(\Rightarrow x.125=10\)
\(\Rightarrow x=10:125\)
\(\Rightarrow x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\)
d) \(5.x^2-1=124\)
\(\Rightarrow5.x^2=125\)
\(\Rightarrow x^2=125:5\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow x=\pm5\)
Vậy \(x=\pm5\)
Câu 1:
a)28.2.4=28.2.22=211
b)85:64=85:82=83
c)37:9=37:32=35
d)917.81=917.92=919
e)x6.x.x2=x9
B:6 so sánh
a, \(7^{18}\) + \(7^{19}\) và \(7^{20}\)
ta có : \(7^{18}\) + \(7^{19}\) = \(7^{37}\)
mà \(7^{37}\) > \(7^{12}\)
\(\Rightarrow\) \(7^{18}\) + \(7^{19}\) > \(7^{20}\)
a) 915 và 2710
\(9^{15}=\left(3^2\right)^{15}=3^{30}\)
\(27^{10}=\left(3^3\right)^{10}=3^{30}\)
915=2710
b) 2542 và 1235
2542=(256)7
1235=(125)7
256=(5.5)6=56.56
125=(3.4)5=35.45
Ta thấy 256>125 => 2542>1235
c) 11
1)Đưa về lũy thừa cùng cơ số 2
82= \(\left(2^3\right)^2=2^6\) 323= \(\left(2^5\right)^3=2^{15}\) 644= \(\left(2^6\right)^4=2^{24}\) 43= \(\left(2^2\right)^{^3}=2^6\)
2)Đưa về lũy thừa cùng cơ số 3
93= \(\left(3^2\right)^3=3^6\) 274= \(\left(3^3\right)^4=3^{12}\) 95= \(\left(3^2\right)^5=3^{10}\) 816= \(\left(3^4\right)^6=3^{24}\)
3)Đưa về lũy thừa cùng cơ số 2
83:42= \(\left(2^3\right)^3:\left(2^2\right)^2=2^9:2^4=2^5\) 162:32= \(\left(2^4\right)^2:2^5=2^8:2^5=2^3\)
\(64^4:4^3=\left(2^6\right)^4:\left(2^2\right)^3=2^{24}:2^6=2^{18}\) 323:82= \(\left(2^5\right)^3:\left(2^3\right)^2=2^{15}:2^6=2^9\)
a, \(\left(3^2\right)^3=3^{2.3}=3^6\) ; \(\left(3^3\right)^2=3^{3.2}=3^6\) ; \(\left(3^2\right)^5=3^{2.5}=3^{10}\)
\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}\)
\(81^{10}=\left(3^4\right)^{10}=3^{4.10}=3^{40}\)
b, \(\left(5^3\right)=5^3\) ; \(\left(5^4\right)^3=5^{4.3}=5^{12}\) ; \(\left(5^2\right)^4=5^{2.4}=5^8\)
\(25^5=\left(5^2\right)^5=5^{2.5}=5^{10}\)
\(125^{14}=\left(5^3\right)^{14}=5^{3.14}=5^{42}\)