Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{n\left(n+1\right)}{2}\)
F=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Từ 1-> n có: (n-1)+1=n (số hạng)
=>\(A=1+2+3+...+n=\frac{\left(n+1\right).n}{2}\)
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
Bài 1:
a) \(2^8.2.4=2^9.2^2=2^{11}\)
b) \(8^5:64=8^5:8^2=8^3\)
c) \(3^7:9=3^7:3^2=3^5\)
d) \(9^{17}.81=9^{17}.9^2=9^{19}\)
e) \(x^6.x.x^2=x^9\)
Bài 2:
a) \(2^x-15=17\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5
b) \(2.3^x=162\)
\(3^x=162:2\)
\(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy x = 4
c) \(5.x.5^2=10\)
\(\Rightarrow x.5^3=10\)
\(\Rightarrow x.125=10\)
\(\Rightarrow x=10:125\)
\(\Rightarrow x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\)
d) \(5.x^2-1=124\)
\(\Rightarrow5.x^2=125\)
\(\Rightarrow x^2=125:5\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow x=\pm5\)
Vậy \(x=\pm5\)
Câu 1:
a)28.2.4=28.2.22=211
b)85:64=85:82=83
c)37:9=37:32=35
d)917.81=917.92=919
e)x6.x.x2=x9
a) \(3.5^2-16:2^3.2\)
\(=3.25-16:8.2\)
\(=75-2.2\)
\(=75-4\)
\(=71\)
b) \(168+\left\{\left[2\left(2^4+3^2\right)-256^0\right]:7^2\right\}\)
\(=168+\left\{\left[2\left(16+9\right)-256^0\right]:7^2\right\}\)
\(=168+\left[\left(2.25-256^0\right):7^2\right]\)
\(=168+\left[\left(50-1\right):7^2\right]\)
\(=168+\left(49:7^2\right)\)
\(=168+\left(49:49\right)\)
\(=168+1\)
\(=169\)
c) \(9^{20}:9^{18}-\left(4^2-7\right)^2+8.5^2+5600:\left(3^3+1^8\right)\)
\(=9^{20}:9^{18}-\left(16-7\right)^2+8.5^2+5600:\left(27+1\right)\)
\(=9^{20}:9^{18}-9^2+8.5^2+5600:28\)
\(=9^{20-18}-9^2+8.25+5600:28\)
\(=9^2-9^2+200+200\)
\(=81-81+200+200\)
\(=200+200\)
\(=400\)
a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
b) \(109.5^2-3^2.25\)
\(=109.25-9.25\)
\(=25\left(109-9\right)\)
\(=25.100\)
\(=2500\)
c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)
\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)
\(=\left(5^2.6-20.5\right):10-20\)
\(=\left(25.6-20.5\right):10-20\)
\(=\left(150-100\right):10-20\)
\(=50:10-20\)
\(=5-20\)
\(=-15\)
Ta có :
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Ta lại có :
108 - 1 > 108 - 3
=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=> \(1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
\(=>A< B\)
h)ko phải là số chính phương
bạn làm hộ mình đi