K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

@Akai Haruma

AH
Akai Haruma
Giáo viên
26 tháng 11 2019

Lời giải:

Vì $x=x_0$ là nghiệm của PT $ax^2+bx+3=0$ nên $ax_0^2+bx_0+3=0$

Chia 2 vế cho $x_0^2\neq 0$ ta có:

$a+\frac{b}{x_0}+\frac{3}{x_0^2}=0\Leftrightarrow 3.(\frac{1}{x_0})^2+b.\frac{1}{x_0}+a=0$

Do đó $\frac{1}{x_0}$ là nghiệm của PT $3x^2+bx+a=0$

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)

4 tháng 9 2021

ai đó giúp mình với :((

NV
22 tháng 3 2022

A là đáp án đúng

13 tháng 9 2020

Bài này cơ bản rồi

\(\hept{\begin{cases}x_1+x_2=a\\x_1x_2=1\end{cases}}\)\(\Rightarrow x_1^2+x_2^2=a^2-2\)

Đặt \(S_n=x_1^n+x_2^n\)

Đến đây bạn thay \(x_1,x_2\)vào phương trình và giải tiếp qua một vài bước biến đổi.

Mình dùng ipad nên bấm lâu lắm, thông cảm chứ dạng này làm nhiều rồi :((

4 tháng 9 2021

bloody hell còn 2 tiếng nữa thôi pls send help

4 tháng 9 2021

ban  nham  roi   vi   khong  phai  nhu  the  dau  nen  ban  sai  roi. 

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

24 tháng 2 2016

\(ax^3-\left(a+2\right)x^2+3x-1=0\) (1)

\(ax^3-\left(a+2\right)x^2+3x-1=0\Leftrightarrow\left(x-1\right)\left(ax^2-2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\ax^2-2x+1=0\end{cases}\left(2\right);\left(3\right)\) 

Nhận xét rằng phương trình  \(x-1=0\) (2) luôn có nghiệm x = 1

Phương trình \(ax^2-2x+1=0\)    (3)  có nghiệm x=1 khi và chỉ khi a=1.

Khi đó x=1 là nghiệm kép của (3)

- Nếu a=0 thì (3) có nghiệm \(x=\frac{1}{2}\)

- Nếu \(a\ne0\) thì (3) là phương trình bậc hai có \(\Delta'=1-a\)

    + Nếu \(\Delta'<0\)

       hay a>1 thì ( 3) vô nghiệm

     + Nếu a<1, \(a\ne0\) thì \(\Delta'>0\)

       nên phương trình (3) có hai nghiệm  \(x_{1;2}=\frac{1\pm\sqrt{1-a}}{a}\)

Theo nhận xét trên thì hai nghiệm này cùng khác 1. Ta có kết luận

- Nếu \(a\ge1\)  thì (1)  có một nghiệm x=1 ( khi a=1 thì x = 1 là nghiệm bội ba)

- Nếu a = 0 thì (1) có hai nghiệm phân biệt \(x=1;x=\frac{1}{2}\)

- Nếu  a < 1, \(a\ne0\) thì (1) có ba nghiệm phân biệt

x = 1, \(x=\frac{1-\sqrt{1-a}}{a};x=\frac{1=\sqrt{1-a}}{a}\)