K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016
  • \(4x_1=6x_2=10x_3=12x_4\Leftrightarrow2x_1=3x_2=5x_3=6x_4\Leftrightarrow\frac{x_1}{\frac{1}{2}}=\frac{x_2}{\frac{1}{3}}=\frac{x_3}{\frac{1}{5}}=\frac{x_4}{\frac{1}{6}}=P\)
  • Thay vào \(x_1+x_2+x_3+x_4=36\Leftrightarrow\frac{1}{2}P+\frac{1}{3}P+\frac{1}{5}P+\frac{1}{6}P=36\)
  • \(\Leftrightarrow\frac{6}{5}P=36\Leftrightarrow P=30\)
  • Vậy, \(x_1=\frac{1}{2}P=15;x_2=\frac{1}{3}P=10;x_3=\frac{1}{5}P=6;x_4=\frac{1}{6}P=5\)
3 tháng 6 2016

4x1 = 6x2 = 10x3 = 12x4 => \(\frac{x_1}{\frac{1}{4}}=\frac{x_2}{\frac{1}{6}}=\frac{x_3}{\frac{1}{10}}=\frac{x_4}{\frac{1}{12}}=\frac{x_1+x_2+x_3+x_4}{\frac{1}{4}+\frac{1}{6}+\frac{1}{10}+\frac{1}{12}}=\frac{36}{\frac{36}{60}}=60\)

=> (x1 ; x2 ; x3 ; x4) = ( \(\frac{60}{4};\frac{60}{6};\frac{60}{10};\frac{60}{12}\)) = ( 15 ; 10 ; 6 ; 5 )

3 tháng 11 2016

chịu rùi

bạn ơi

tk nhé@@@@@@@@@@@@@@@@

hihi

3 tháng 11 2016

hoàng phúc

16 tháng 7 2015

Bài 1: a/b=b/c=c/a chứ không phải c/d

áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

a/b=b/c=c/a=(a+b+c)/(b+c+a)=1

a/b=1 => a=b

b/c=1 => b=c

Vậy a=b=c

23 tháng 10 2016

Xét n tích \(x_1x_2,x_2x_3,...,x_nx_1\), mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng bằng 0 nên số tích có giá trị 1 bằng số tích có giá trị -1, và đều bằng \(\frac{n}{2}\). Vậy n chia hết cho 2.

Bây giờ ta sẽ chứng minh rằng số tích có giá trị -1 cũng là số chẵn. Thật vậy, xét

\(A=\left(x_1x_2\right)\left(x_2x_3\right)...\left(x_{n-1}x_n\right)\left(x_nx_1\right).\)

Ta thấy \(A=x_1^2x_2^2...x_n^2\) nên \(A=1>0\) chứng tỏ số tích có giá trị -1 cũng là số chẵn, tức là \(\frac{n}{2}\) là số chẵn, do đó n chia hết cho 4.

23 tháng 10 2016

thanks

10 tháng 8 2019
  • \(P=\frac{x^2+2}{1-x^3}-\frac{1}{2\left(1+\sqrt{x}\right)}-\frac{1}{2\left(1-\sqrt{x}\right)}\\ =\frac{x^2+2}{1-x^3}+\frac{-1+\sqrt{x}}{2\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\frac{-1-\sqrt{x}}{2\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}\\ =\frac{x^2+2}{\left(1-x\right)\left(1+x+x^2\right)}+\frac{-1}{1-x}\\ =\frac{x^2+2-\left(1+x+x^2\right)}{\left(1-x\right)\left(1+x+x^2\right)}\\ =\frac{1-x}{\left(1-x\right)\left(1+x+x^2\right)}\\ =\frac{1}{1+x+x^2}\)

b,Ta có \(\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{y_1-x_1}{y_2-x_2}=\frac{-2}{-1}=2\)

\(\Rightarrow\hept{\begin{cases}x_1=2x_2=2.4=8\\y_1=2y_2=2.3=6\end{cases}}\)

...............