K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

ĐK \(\hept{\begin{cases}x\ge5\\x\le-2\end{cases}}\)

\(\Rightarrow x^2-3x-10< x^2-4x+4\)

<=> x<14

=> (a;b)=(5;14)

=> a+b=19

6 tháng 4 2020

TH3 x≥1

bạn không đối chiếu đk sao??

19 tháng 4 2020

\(\left|2x+4-2x\right|+\left|x-2+a\right|\le3\)

đặt a-2=y

=> |2x-y|+|x+y| =<3

=> Tập GT \(\left(\frac{-1}{2};\frac{3}{2}\right)\)

20 tháng 4 2020

ai giúp em câu này với, được không ạ

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

6 tháng 5 2020

Lần sau em đăng trong h nhé!

Hướng dẫn: 

\(x-\sqrt{2x+7}\le4\)

<=> \(\sqrt{2x+7}\ge x-4\)(1) 

ĐK: x \(\ge\)-7/2

+) Với x  - 4 < 0 <=> x < 4  khi đó (1) <=> \(\sqrt{2x+7}\ge0>x-4\) luôn đúng 

Đối chiếu đk:  x\(\in\)[ -7/2; 4 ) 

+) Với x - 4 \(\ge\)0 <=> x \(\ge\)

(1) <=> \(2x+7\ge x^2-8x+16\)

<=> \(x^2-10x+9\le0\)

<=> x\(\in\)[ 1; 9 ]

Đối chiếu đk: x \(\in\)[4; 9 ]

Kết hợp 2 trường hợp ta có: x \(\in\)[ -7/2 ; 9 ]

Vậy a = -7/2; b = 9 nên 2a + b = 2

25 tháng 5 2021

ĐK: x>0

\(bpt\Leftrightarrow\hept{\begin{cases}x\ge0\\6x^2-13x-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=3;x=\frac{-5}{6}\end{cases}\Leftrightarrow}x=3\Rightarrow y=\pm2}\)

\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{\left(\sqrt{2x+17}-\sqrt{2x+1}\right)\left(\sqrt{2x+17}+\sqrt{2x+1}\right)}{\sqrt{2x+17}+\sqrt{2x+1}}\)

\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{16}{\sqrt{2x+17}+\sqrt{2x+1}}\)

\(\Leftrightarrow\sqrt{2x+17}+\sqrt{2x+1}\ge4\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{2x+17}+\sqrt{2x+1}\right)^2\ge16x\)

\(\Leftrightarrow\sqrt{\left(2x+17\right)\left(2x+1\right)}\ge6x-9\)

\(\Leftrightarrow x\in\left\{\frac{3}{2},4\right\}\)

Theo đk, ta có tập nghiệm của bpt là S= \(\left\{0;4\right\}\)

25 tháng 5 2021

bạn ơi sao lại có dấu mở ngoặc kép là sao

NV
12 tháng 2 2020

\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)

\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)

\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)