Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}x\ge5\\x\le-2\end{cases}}\)
\(\Rightarrow x^2-3x-10< x^2-4x+4\)
<=> x<14
=> (a;b)=(5;14)
=> a+b=19
Bpt \(\left|4x+3\right|-\left|x-1\right|< x\) có tập nghiệm S=(a;b) . tính giá trị biểu thức P=2a-4b
\(\left|2x+4-2x\right|+\left|x-2+a\right|\le3\)
đặt a-2=y
=> |2x-y|+|x+y| =<3
=> Tập GT \(\left(\frac{-1}{2};\frac{3}{2}\right)\)
Lần sau em đăng trong h nhé!
Hướng dẫn:
\(x-\sqrt{2x+7}\le4\)
<=> \(\sqrt{2x+7}\ge x-4\)(1)
ĐK: x \(\ge\)-7/2
+) Với x - 4 < 0 <=> x < 4 khi đó (1) <=> \(\sqrt{2x+7}\ge0>x-4\) luôn đúng
Đối chiếu đk: x\(\in\)[ -7/2; 4 )
+) Với x - 4 \(\ge\)0 <=> x \(\ge\)4
(1) <=> \(2x+7\ge x^2-8x+16\)
<=> \(x^2-10x+9\le0\)
<=> x\(\in\)[ 1; 9 ]
Đối chiếu đk: x \(\in\)[4; 9 ]
Kết hợp 2 trường hợp ta có: x \(\in\)[ -7/2 ; 9 ]
Vậy a = -7/2; b = 9 nên 2a + b = 2
ĐK: x>0
\(bpt\Leftrightarrow\hept{\begin{cases}x\ge0\\6x^2-13x-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=3;x=\frac{-5}{6}\end{cases}\Leftrightarrow}x=3\Rightarrow y=\pm2}\)
\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{\left(\sqrt{2x+17}-\sqrt{2x+1}\right)\left(\sqrt{2x+17}+\sqrt{2x+1}\right)}{\sqrt{2x+17}+\sqrt{2x+1}}\)
\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{16}{\sqrt{2x+17}+\sqrt{2x+1}}\)
\(\Leftrightarrow\sqrt{2x+17}+\sqrt{2x+1}\ge4\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{2x+17}+\sqrt{2x+1}\right)^2\ge16x\)
\(\Leftrightarrow\sqrt{\left(2x+17\right)\left(2x+1\right)}\ge6x-9\)
\(\Leftrightarrow x\in\left\{\frac{3}{2},4\right\}\)
Theo đk, ta có tập nghiệm của bpt là S= \(\left\{0;4\right\}\)
\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)
\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)
\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
cau biet toan lop 10 ha