Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(sin^2x+cos^2x=1\Leftrightarrow\dfrac{9}{25}+cos^2x=1\Leftrightarrow cos^2x=\dfrac{16}{25}\)
\(\Rightarrow cosx=\pm\dfrac{4}{5}\)
ta có : \(tanx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{3}{5}}{\pm\dfrac{4}{5}}=\pm\dfrac{3}{4}\) \(\Rightarrow cot=\dfrac{1}{tan}=\dfrac{1}{\pm\dfrac{3}{4}}=\pm\dfrac{4}{3}\)
vậy ................................................................................................
b) ta có : \(tanx=\sqrt{3}\Leftrightarrow cotx=\dfrac{1}{tanx}=\dfrac{1}{\sqrt{3}}\)
ta có : \(\dfrac{sin^2x+cos^2x}{cos^2x}=1+tan^2x\Leftrightarrow\dfrac{1}{cos^2x}=1+tan^2x\)
\(\Leftrightarrow\dfrac{1}{cos^2x}=1+\left(\sqrt{3}\right)^2=4\Rightarrow cos^2x=\dfrac{1}{4}\) \(\Leftrightarrow cos^2x=\pm\dfrac{1}{2}\)
ta có : \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\Rightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)
vậy .............................................................................................
câu c bn làm tương tự câu a ; còn câu d bn làm tương tự câu b nha :)
\(cosx=\sqrt{1-\dfrac{7}{16}}=\dfrac{3}{4}\)
\(tanx=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cotx=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}=\dfrac{3\sqrt{7}}{7}\)
\(M=\left(\dfrac{3}{7}\sqrt{7}+\dfrac{1}{3}\sqrt{7}\right):\left(\dfrac{3}{7}\sqrt{7}-\dfrac{1}{3}\sqrt{7}\right)\)
\(=\dfrac{16}{21}:\dfrac{2}{21}=8\)
a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0
b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0
c) sinx - cosx = sinx - sin(90-x)
Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0
Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0
d) Tương tự câu c)
Ta có: tan(x)=12/53 ==> x= \(tan^{-1}\left(\frac{12}{53}\right)\)=69 độ 56 phút 56.25 giây.
nên sinx=0,9394, cotx=0.3650 ( mình làm tròn đến số thập phân thứ 4 nha bạn)